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Abstract
Purpose  Hormone receptor-positive (HR+) and human epidermal growth factor receptor 2 negative (HER2−) early breast 
cancer (BC) is the most prevalent BC subtype with substantial biological heterogeneity. Although clinicopathological (CP) 
characteristics have a clear prognostic value, additional biomarkers could refine survival prediction and guide treatment 
decision.
Methods  Copy number aberrations and somatic driver mutations were obtained with OncoScan CGH array and sequencing 
of 36 genes on HR+/HER2− node-positive early BC patients treated with chemotherapy from the PACS04 trial. We built a 
two-gene genomic score (GS) associated with distant disease-free survival (DDFS), whose prognostic value was assessed 
on the external METABRIC data (n = 1413) using overall survival (OS) and breast cancer-specific survival (BCSS).
Results  In the PACS04 trial (n = 327), the median follow-up for DDFS (65 events) was 9.6 years. FGFR1 amplifications 
( HRAmplification = 2.44, 95% CI [1.25; 4.76], p = 0.009) and MAP3K1 mutations ( HRMutation = 0.10, [0.01; 0.78], p = 0.03) were 
associated with DDFS beyond CP characteristics. A prognostic GS combining FGFR1 amplifications and MAP3K1 mutations 
added more information to CP model ( �2

DDFS
 = 12.97, pDDFS < 0.001 and �2

OS
 = 11.52, pOS < 0.001). In the METABRIC study 

(n = 1413), FGFR1 amplifications ( HRAmplification = 2.00 [1.40; 2.87], p < 0.001) and MAP3K1 mutations ( HRMutation = 0.58 
[0.41; 0.83], p = 0.003) were significantly associated with BCSS beyond CP characteristics. The prognostic GS added sig-
nificant prognostic information to CP model ( �2

BCSSS
 = 15.39, pBCSS < 0.001 and �2

OS
 = 5.62, pOS = 0.02).

Conclusion  In axillary node-positive, HR+, and HER2− early BC, amplifications of FGFR1 gene were strongly associated 
with increased risk for distant disease, while mutations of MAP3K1 gene were significantly associated with decreased risk.

Keywords  Copy number aberrations (CNA) · Mutations · Breast cancer (BC) · Biomarkers · Cox regression

Introduction

Hormone receptor-positive (HR+) and human epidermal 
growth factor receptor 2 negative (HER2−) early breast 
cancer (BC) is the most common BC subtype, accounting 
for 73% of all BC in the Unites States in 2010 [1]. In this BC 
subtype, patients with node-positive disease have a worse 
prognosis than node-negative patients. Patients with early 
HR+/HER2− node-positive BC are usually treated with 
adjuvant therapy to reduce the risk of distance disease and 
recurrence: chemotherapy to treat micro-metastatic disease, 
radiotherapy to destroy any cancer cells that remain in the 
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breast area after surgery, and hormone therapy that is given 
during at least 5 years to stop estrogen receptor signaling.

Currently, to estimate an individual prognosis for clinical 
decision-making, clinicopathological (CP) characteristics 
such as age, tumor size, lymph node status, tumor grade, 
HER2 status, proliferation, and percentage of cells express-
ing estrogen and progesterone receptors are usually consid-
ered [2]. Although CP characteristics are prognostic, they 
do not explain all the variations in survival, as early BC 
patients may develop distant metastasis [3, 4] during or after 
chemotherapy or hormone therapy. Hence, in addition to 
relevant classical CP characteristics, it is of interest to study 
the prognostic value of additional biomarkers.

Previous studies have shown that high amplifications 
of CCND1 (11q13) [5, 6], FGFR1 (8p12) [7, 8], ZNF2017 
(20q13) [9–11], and ERBB2 (17q12) [12–14] are associated 
with a poor outcome and may contribute to hormone ther-
apy resistance. Amplifications of these genes are observed, 
respectively, in approximately 19.6%, 22.8%, 8.5%, and 9.9% 
[15] of cases. Other studies have also shown that PIK3CA 
[16], TP53 [17], and MAP3K1 [18] mutations are signifi-
cantly associated with survival and are the most frequently 
mutated genes in BC with a prevalence of 36%, 37%, and 
8%, respectively [19]. The aim of this study was to evaluate 
which genomic alterations could refine survival prediction. 
Using data from the PACS04 trial, we evaluated the prog-
nostic value of the copy number of predefined well-known 
genes (CCND1, FGFR1, ZNF217, and ERRB2) and muta-
tions of a panel of driver genes in addition to conventional 
CP characteristics. We built a genomic score to discriminate 

patients with different levels of risk and investigated the 
prognostic value in the external METABRIC cohort.

Materials and methods

Patients

Training data: PACS04 [20] was a phase III trial that 
included 1194 patients with node-positive, HR+, and 
HER2− early BC. After conservative surgery, patients were 
randomized to receive either six cycles of 5-fluorouracil, 
cyclophosphamide, and epirubicin (FEC) or six cycles of 
epirubicin and docetaxel 75 mg/m2 (ED). Radiotherapy was 
given after adjuvant chemotherapy followed by hormone 
therapy. Three hundred and twenty-seven patients treated 
with ED had clinical, DNA copy number, and somatic muta-
tion information available. Copy numbers were obtained by 
the OncoScan Comparative Genomic Hybridization (CGH) 
array and somatic mutations by targeted sequencing (TS).

Validation data: METABRIC (Molecular Taxonomy of 
Breast Cancer International Consortium) [21] was a Can-
ada–UK project that included 2509 patients with early BC. 
One thousand four hundred and thirteen patients had HR+ 
and HER2− primary tumors and had survival outcome, clin-
ical, DNA copy number, and somatic mutation information 
available. Copy number and somatic driver mutations were 
generated using Affymetrix SNP 6.0 CGH array and TS of 
173 genes. Patient selection for PACS04 and METABRIC 
data is summarized in Fig. 1.

Pa�ents treated in arm B with ED         
(n=401)

Pa�ents with no available CGH data 
(n=792)

Pa�ent treated in arm A with FEC 
(n=1)

Pa�ents with node-posi�ve HR+/HER2- BC treated 
with FEC or ED, with available CP data                                                         

(n=1194)

Pa�ents with available CGH data            
(n=402)

Pa�ents with available TS data              
(n=327)

Pa�ent with no available TS data 
(n=74) Pa�ents with HR+/HER2- BC, with 

available survival outcome, clinical, 
CGH and TS data                  

(n=1413)

Pa�ents with HR- BC       
(n=454)

Pa�ents with BC,                                            
with available survival outcome, 

clinical, CGH and TS data                                     
(n=1980)

Pa�ents with HR+ BC, with available 
survival outcome, clinical, CGH and 

TS data                                            
(n=1526)

A Training set: PACS04 Trial External set: METABRIC Trial 

Pa�ents with HR+/HER2- node-posi�ve 
BC, with available survival outcome, 

clinical, CGH and TS data                      
(n=633)

Pa�ents with BC                            
(n=2509)

Pa�ents with no available 
survival outcome                             

(n=529)

Pa�ents with HER2+ BC                              
(n=113)

Pa�ents with node-nega�ve BC                              
(n=780)

B

Fig. 1   Flow chart for the training and the external data. PACS04 Pro-
gramme Adjuvant Cancer du Sein, METABRIC Molecular Taxonomy 
of Breast Cancer International Consortium, HR+ hormone receptor 
positive, HER2− human epidermal growth factor receptor 2 negative, 

BC breast cancer, TS targeted sequencing, CGH comparative genomic 
hybridization, FEC 5-fluorouracil (5-FU) + epirubicin + cyclophos-
phamide, ED epirubicin + docetaxel
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DNA isolation, hybridization, and sequencing

Tumor DNA was successfully extracted from formalin-fixed 
and paraffin-embedded (FFPE) samples from PACS04 trial 
patients. Five hundred samples were collected and hybridi-
zation was performed on 433. DNA copy numbers were 
assessed using Oncoscan FFPE assay kit. The data were 
normalized and segmented via rCGH [22] algorithm, and 
the copy number threshold to determine amplification and 
deletion was, respectively, greater than 4 copies (log-2-ra-
tio > 1) [23] and less than 1 copy (log-2-ratio < − 1) [23]. 
Targeted next-generation sequencing of a panel of 36 genes 
was performed on 394 primary breast tumor tissues from 
PACS04 trial. Only mutations with variant allele frequency 
(VAF) greater than 10% were considered. A filter method 
was applied to selected genes with a prevalence of mutation 
greater than 3% to make sure that the statistical analyses 
converged.

Statistical analysis

In the training data (PACS04 trial), to compare the quantity 
of lost information, the differences in patient characteris-
tics between the patients included and excluded from the 
analysis were tested using, respectively, Kruskal–Wallis 
and Fisher’s exact test for continuous and categorical vari-
ables. The primary endpoint for the statistical analysis was 
distant disease-free survival (DDFS), defined as the time 
from randomization to the first recurrence (distant site) or 
death from any cause. The secondary endpoint was over-
all survival (OS), defined as the time from randomization 
to death from any cause. Patients who did not experience 
events were censored at the date of last follow-up. The corre-
lation between CP and genomic features was analyzed using 
Spearman correlation and correlation coefficients value and 
95% confidence intervals (CI) were obtained using 5000 
bootstrap repetitions. We checked the hypothesis of log-
linearity of continuous covariates in the Cox model using 
splines with 2 degrees of freedom. A power calculation of 
this study was performed. Assuming a genomic biomarker 
with a prevalence of 25% of alteration in the analysis popula-
tion at a two-sided significance level of 0.05, if the hazard 
ratio (HR) for DDFS is equal to 2, then the power to reject 
the null hypothesis that the HR is equal to 1 with a 0.05 sig-
nificance level will be 77%. In univariable analysis, the prog-
nostic value of each genomic characteristic on DDFS was 
performed using Cox regression and Kaplan–Meier curves. 
The threshold of two-sided significance was fixed at 5%. 
In multivariable analysis, we estimated the CP Cox model 
containing age at randomization (years), tumor size (mm), 
tumor grade (SBR), lymph node status, estrogen receptor 
(ER, %), and progesterone receptor (PR, %). The CP model 
was compared with the model containing CP and relevant 

genomic (RG) characteristics using the likelihood ratio test 
to make sure that RG added complementary information to 
the traditional CP model. We also calculated the relative 
contribution of each variable in the Cox regression model. 
For internal validation, the area under the receiver operating 
characteristic (ROC) curve (AUC) [24] value at 5 and 10 
years was used for evaluating the discrimination of prognos-
tic CP and CP + RG models.

The genomic score (GS) was defined as the linear com-
bination of the copy number and mutation genes in the 
CP + RG model. We also used the likelihood ratio test to 
evaluate the ability of the GS to predict OS by comparing 
CP model with CP + GS model.

In the validation data (METABRIC study), the DDFS 
endpoint was not available. Only the OS endpoint—defined 
as the time from diagnosis to death from any cause—and 
breast cancer-specific survival (BCSS) endpoint—defined as 
the time from diagnosis to death from BC—were available. 
Patients who did not experience the event were censored at 
the date of last follow-up. First, we built the CP + RG model 
found in the training data (PACS04) to ensure that the results 
were consistent in both data sets. Second, the GS built in the 
training data (PACS04) was validated in the validation data 
(METABRIC) to evaluate its ability to predict BCSS and 
OS. The CP model was compared to the CP + GS model, 
using the likelihood ratio test and AUC values at 5 and 10 
years. We used R software version 3.5.1 for the statistical 
analysis and threshold of two-sided significance was fixed 
at 5%.

Data availability

The data sets generated during and/or analyzed during the 
current study are not publicly available in respect with the 
patient consent forms. Data access can be requested from the 
corresponding author.

Results

Description of PACS04 study population (training 
population)

Three hundred and twenty-seven patients (27%) with node-
positive, HR+/HER2− BC treated with ED were selected. 
The other 867 patients (73%) did not have CGH data (66%) 
or TS data (6%) available or were not treated with ED 
(~ 1%). No significant differences were noted in the patient 
characteristics between selected (n = 327) and unselected 
(n = 867) patients (Table 1). The proliferation marker Ki-67 
was excluded from the rest of the analyses because of too 
many missing values.
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The copy number status of some well-known genes 
(CCND1, FGFR1, ZNF217, and ERBB2) was obtained 
from CGH data. 21.4%, 15%, 12.5%, and 5.2% of patients, 

respectively, had amplifications for CCND1, FGFR1, 
ZNF217, and ERBB2 (Fig. 2). In the TS data based on a 
panel of 36 sequenced genes (PIK3CA, TP53, MAP3K1, 

Table 1   Study population 
(embedded in the PACS04 trial)

Data are mean (SD), median (Q1–Q3), min–max, N (missing), or N (%), SD standard deviation, Q1 25th 
percentile, Q3 75th percentile, Min minimum, Max maximum, N number, Missing number of missing val-
ues, % percentage, HR+ hormone receptor positive, HER2− human epidermal growth factor receptor nega-
tive, BC breast cancer, CGH comparative genomic hybridization, SBR Scarff Bloom Richardson grading, 
ED Epirubicin + Docetaxel
φ, χ , correspond, respectively, to p-value associated with Kruskal–Wallis test, Fisher’s exact test

Characteristics Patients with node-positive HR+/
HER2− BC, with clinical, CGH, 
and targeted sequencing data, treated 
with ED

Overall (n = 1194) p-value

Yes (n = 327) No (n = 867)

Demographic and tumor information
 Age at randomization (years) 0.4φ

  Mean (SD) 51.2 (7.9) 50.9 (8) 51 (8)
  Median (Q1–Q3) 52 (46–57) 51 (45–57) 52 (45–57)
  Min–max 27–65 27–66 27–66
  N (missing) 327 (0) 867 (0) 1194 (0)

 Tumor size (mm) 0.3φ

  Mean (SD) 25.8 (16.9) 25.1 (16.9) 25.3 (16.9)
  Median (Q1–Q3) 20 (15–30) 20 (15–30) 20 (15–30)
  Min–max 7–150 4–180 4–180
  N (missing) 325 (2) 858 (9) 1183 (11)

 Tumor SBR grade 0.7χ

  Well differentiated (I) 59 (18.4%) 142 (16.9%) 201 (17.3%)
  Moderately differentiated (II) 183 (57%) 474 (56.4%) 657 (56.5%)
  Poorly differentiated (III) 79 (24.6%) 225 (26.8%) 304 (26.2%)
  N (Missing) 321(6) 841 (26) 1162 (32)

 Lymph node status 0.3χ

  1–3 224 (68.5%) 627 (72.3%) 851 (71.3%)
  4–9 78 (23.9%) 188 (21.7%) 266 (22.3%)
  ≥ 10 25 (7.6%) 52 (6%) 77 (6.4%)
  N (missing) 327 (0) 867 (0) 1194 (0)

Biomarkers
 ER: estrogen receptor (%) 0.1φ

  Mean (SD) 87.4 (21.2) 87.5 (24.3) 87.5 (23.5)
  Median (Q1–Q3) 100 (80–100) 100 (87.8–100) 100 (87–100)
  Min–Max 0–100 0–100 0–100
  N (missing) 325 (2) 860 (7) 1185 (9)

 PR: Progesterone Receptor (%) 0.3φ

  Mean (SD) 56.3 (40.7) 58.5 (41) 57.9 (40.9)
  Median (Q1–Q3) 70 (10–97) 73 (10–100) 70 (10–100)
  Min–max 0–100 0–100 0–100
  N (missing) 316(11) 841 (26) 1157 (37)

 Ki-67: proliferation marker (%) 0.1φ

  Mean (SD) 15.9 (16.2) 14.2 (15.4) 14.7 (15.6)
  Median (Q1–Q3) 10 (5–20) 10 (2–20) 10 (2–20)
  Min–max 0–70 0–100 0–100
  N (missing) 169 (158) 410 (457) 579 (615)
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BRCA2, ATM, GATA3, NF1, MTOR, AKT1, BRCA1, TSC2, 
MAP2K4, PTEN, TSC1, ESR1, PALB2, EGFR, ERBB2, 
FBXW7, KEAP1, RAD51B, RAD51C, STK11, FGFR4, 
PIK3R1, SF3B1, ALK, CTNNB1, DDR2, ERBB3, ERBB4, 
FGFR2, KDR, MET, RET, and RHOA), 12 genes (33%) 
were selected and 24 genes (67%) were excluded because 
the prevalence of mutation was less than 3% (Supplemen-
tary Table S1). PIK3CA, TP53, and MAP3K1 were the most 
mutated genes and the prevalence was, respectively, 29.1%, 
14.7%, and 14% (Fig. 2). All genomic characteristics are 
described in supplementary data (Supplementary Tables S1 
and S2).

Correlation between CP and genomic features 
in the training data (PACS04 trial)

The correlation between CP and genomic features is given 
in Table 2.

Copy numbers and mutations associated with DDFS 
in the training data (PACS04 trial)

After a median follow-up of 9.6 years, we observed 65 
events for 327 patients in the analysis population. In the 
univariable analysis, copy number alterations of FGFR1 
( HRAmplification = 2.18, 95% CI [1.21; 3.91], p < 0.01 and 
HRDeletion = 3.22, 95% CI [1.28; 8.12], p = 0.01) and ZNF217 
( HRAmplification = 1.99, 95% CI [1.08; 3.65], p = 0.03) were 
associated with an increased risk of distant disease, whereas 
MAP3K1 mutations ( HRMutation = 0.09, 95% CI [0.01; 0.63], 
p = 0.02) were associated with a decreased risk of distant 
disease (Table 3). The Kaplan–Meier analysis showed the 
similar results for FGFR1 ( plog - rank = 0.0024 ), ZNF217 
( plog - rank = 0.024 ) and MAP3K1 ( plog - rank = 0.0023 ) 
(Figs. 3 and 4). The verification of the log-linearity hypoth-
esis is provided in Supplementary Figs. S1, S2, and S3.

In multivariable analysis, the model containing CP and 
relevant genomic characteristics selected during the uni-
variable analysis step (CP + FGFR1 + ZNF217 + MAP3K1) 
showed that ZNF217 copy numbers ( HRAmplification = 1.67, 
95% CI [0.79; 3.53], p = 0.2) were not associated with DDFS 
(Table 4) and did not add further prognostic information 
(χ2 = 1.62, p = 0.2) compared to the CP + FGFR1 + MAP3K1 
model (Table  5). The final Cox model selected was 
CP + FGFR1 + MAP3K1 and showed that FGFR1 amplifi-
cations ( HRAmplification = 2.44, 95% CI [1.25; 4.76], p = 0.009) 
were associated with a poor prognosis and MAP3K1 muta-
tions ( HRMutation = 0.10 [0.01; 0.78], p = 0.03) were asso-
ciated with a good prognosis (Table 4). MAP3K1 muta-
tions alone added information to the CP model (χ2 = 7.49, 
p = 0.006) whereas FGFR1 copy numbers alone did not 
(χ2 = 4.96, p = 0.081). It was the combination of FGFR1 
copy numbers and MAP3K1 mutations that added relevant Fi
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complementary information to CP model (χ2 = 15.08, 
p < 0.01) in determining DDFS (Table 5). These results 
were also confirmed by the AUC criteria. The AUC at 5 
and 10 years were higher for CP + FGFR1 + MAP3K1 model 
in comparison with the CP model. The AUC values were, 
respectively, 81.39 and 67.47 at 5 and 10 years for CP model 
and were, respectively, 84.99 and 72.86 at 5 and 10 years 
for CP + FGFR1 + MAP3K1 model. The ROC curves are 
given in Supplementary Fig. S4 and Table S3. The rela-
tive contribution of FGFR1 (rank = 3, χ2 = 8.50, p = 0.014) 
and MAP3K1 (rank = 4, χ2 = 4.71, p = 0.03) was significant 
in determining DDFS, after the usual important prognostic 
variables tumor size and lymph node status ranked 1st and 
2nd (Table S4).

Development of a genomic score based 
on the training data (PACS04 trial)

From the CP + FGFR1 + MAP3K1 model, we established a 
Genomic Score (GS) using only the coefficients associated 
with FGFR1 copy numbers and MAP3K1 mutations. The 
GS was split into three groups for biological relevance. The 
GS distribution is given in Fig. 5. Low risk corresponds to 
MAP3K1 mutated (GS < 0); moderate risk corresponds to 
MAP3K1 not mutated and FGFR1 not amplified (GS = 0); 
high risk corresponds to MAP3K1 not mutated and FGFR1 
amplified (GS > 0).

The Kaplan–Meier figure of DDFS according to 
this grouping shows a clear separation (Fig.  6). As per 

Table 2   Spearman Copy numbers, mutations and CP characteristics correlation coefficients and 95% CI (PACS04 trial)

Age at randomization (years) Tumor size (mm) Tumor grade (SBR) Lymph node status ER (%) PR(%)

Copy numbers
 CCND1 − 0.002

[− 0.111; 0.114]
0.118
[0.01; 0.225]

0.216
[0.114; 0.318]

− 0.11
[− 0.208; − 0.009]

0.017
[− 0.095; 0.122]

− 0.006
[− 0.112; 0.102]

 FGFR1 − 0.018
[− 0.132; 0.097]

0.059
[− 0.049; 0.162]

− 0.01
[− 0.125; 0.108]

− 0.011
[− 0.117; 0.094]

− 0.017
[− 0.124; 0.092]

− 0.1
[− 0.206; 0.003]

 ZNF217 − 0.035
[− 0.146; 0.078]

0.047
[− 0.06; 0.153]

0.212
[0.104; 0.316]

0.031
[− 0.076; 0.142]

− 0.047
[− 0.16; 0.064]

− 0.051
[− 0.154; 0.054]

 ERBB2 0.035
[− 0.09; 0.168]

0.058
[− 0.046; 0.157]

0.092
[− 0.019; 0.202]

0.033
[− 0.087; 0.147]

− 0.005
[− 0.114; 0.1]

0.003
[− 0.105; 0.105]

Somatic mutations
 PIK3CA 0.037

[− 0.069; 0.142]
− 0.021
[− 0.127; 0.088]

− 0.104
[− 0.206; − 0.002]

− 0.102
[− 0.202; 0]

− 0.068
[− 0.178; 0.042]

0.089
[− 0.021; 0.2]

 TP53 0.005
[− 0.107; 0.116]

0.089
[− 0.025; 0.194]

0.137
[0.027; 0.244]

− 0.096
[− 0.188; 0.001]

− 0.11
[− 0.22; 0]

− 0.067
[− 0.178; 0.044]

 MAP3K1 0.055
[− 0.05; 0.159]

− 0.03
[− 0.134; 0.078]

− 0.121
[− 0.224; − 0.014]

− 0.063
[− 0.159; 0.046]

0.009
[− 0.104; 0.116]

0.131
[0.021; 0.24]

 BRCA2 − 0.018
[− 0.118; 0.086]

0.034
[− 0.067; 0.131]

0.01
[− 0.108; 0.126]

− 0.004
[− 0.108; 0.112]

0.071
[− 0.031; 0.164]

− 0.035
[− 0.153; 0.082]

 ATM 0.081
[− 0.02; 0.174]

0.089
[− 0.002; 0.18]

0.047
[− 0.063; 0.154]

− 0.059
[− 0.147; 0.043]

− 0.045
[− 0.156; 0.069]

− 0.104
[− 0.206; 0.003]

 GATA3 0.002
[− 0.103; 0.106]

0.052
[− 0.057; 0.16]

− 0.08
[− 0.207; 0.054]

− 0.02
[− 0.119; 0.092]

0.034
[− 0.078; 0.134]

− 0.071
[− 0.19; 0.048]

 NF1 − 0.019
[− 0.119; 0.09]

0.026
[− 0.099; 0.149]

0.043
[− 0.079; 0.162]

0.041
[− 0.075; 0.152]

− 0.012
[− 0.126; 0.098]

0.016
[− 0.099; 0.126]

 MTOR − 0.084
[− 0.174; 0.018]

− 0.082
[− 0.185; 0.027]

0.004
[− 0.099; 0.111]

− 0.053
[− 0.132; 0.045]

− 0.028
[− 0.139; 0.079]

0.112
[0.001; 0.214]

 AKT1 − 0.115
[− 0.205; − 0.016]

0.008
[− 0.085; 0.107]

0.027
[− 0.064; 0.12]

0.028
[− 0.081; 0.144]

− 0.038
[− 0.152; 0.071]

0.106
[0.012; 0.189]

 BRC A1 − 0.028
[− 0.146; 0.097]

0.002
[− 0.108; 0.111]

0.126
[0.034; 0.218]

0.11
[− 0.018; 0.232]

− 0.016
[− 0.132; 0.094]

− 0.081
[− 0.155; − 0.006]

 TSC2 − 0.067
[− 0.168; 0.04]

− 0.03
[− 0.15; 0.095]

0.031
[− 0.098; 0.158]

0.008
[− 0.102; 0.133]

0.035
[− 0.076; 0.131]

− 0.009
[− 0.123; 0.114]

 MAP2K4 − 0.02
[− 0.128; 0.085]

− 0.005
[− 0.126; 0.118]

− 0.074
[− 0.151; − 0.011]

− 0.092
[− 0.147; − 0.017]

− 0.042
[− 0.169; 0.083]

− 0.07
[− 0.172; 0.042]



393Breast Cancer Research and Treatment (2020) 179:387–401	

1 3

the definition of the score, it added additional informa-
tion ( nDDFS = 307, n - eventDDFS = 58, �2

DDFS
 = 12.97, 

pDDFS < 0.001 and nOS = 307, n - eventOS = 45, �2
OS

 = 11.52, 
pOS < 0.001) to the CP model for DDFS and OS. The model 
description is given in Supplementary Table S5. The com-
parison between a CP + KI67 + GS model versus a CP + KI67 
model on the small subset of 158 patients with KI67 data 
showed that the GS added additional information to this 
model especially for OS ( nDDFS = 158, n - eventDDFS = 29, 
�
2
DDFS

 = 2.92, pDDFS = 0.083 and nOS = 158, n - eventOS = 24, 
�
2
OS

 = 4.06, pOS = 0.041).

Validation of the genomic score in the external data 
(METABRIC trial)

In the external data set (METABRIC), we first checked 
the log-linearity hypothesis of continuous covariates 
(Supplementary Figure S5) and evaluated the prognostic 
value of FGFR1 copy numbers and MAP3K1 mutations 
on BCSS and OS. In univariable analysis (Fig. 7), FGFR1 
copy numbers were significantly associated with the BCSS 
( pBCSS < 0.001) and OS ( pOS < 0.001) whereas MAP3K1 
mutations were only significantly associated with BCSS 
( pBCSS < 0.01) but not with OS ( pOS = 0.28). In addition to 
CP parameters, FGFR1 copy numbers were significantly 
associated with BCSS ( HRAmplification = 2.00, 95% CI [1.40; 
2.87], p < 0.001) and OS ( HRAmplification = 1.54, 95% CI 
[1.15; 2.07], p = 0.004); MAP3K1 mutations were strongly 
associated with BCSS ( HRMutation = 0.58, 95% CI [0.41; 
0.83], p = 0.003) but were not significantly associated 
with OS ( HRMutation = 0.82, 95% CI [0.65; 1.02], p = 0.08) 
(Supplementary Table S7). FGFR1 and MAP3K1 added 
information ( �2

BCSS
 = 21.03, pBCSS < 0.001 and �2

OS
 = 10.36, 

pOS = 0.005) to the CP model for BCSS and OS (Supple-
mentary Table S8). The detail of the relative contribu-
tion of FGFR1 and MAP3K1 is given in Supplementary 
Table S9. The AUC values at 5 and 10 years for BCSS 
and OS were higher for CP + FGFR1 + MAP3K1 model 
( AUC(5 years)BCSS = 74.47, AUC(10 years)BCSS = 73.35, 
AUC(5years)OS = 71.77 and AUC(10 years)OS = 73.34) 
t h a n  C P  m o d e l  (  AUC(5years)BCSS  =  7 4 . 1 2 , 
AUC(10 years)BCSS = 72.24, AUC(5 years)OS = 71.29 and 
AUC(10 years)OS = 72.66). The ROC curves are given in 
Supplementary Figures S6 and S7, and Table S10. Copy 
number alterations of FGFR1 gene increased the risk of 
death from BC whereas mutations of MAP3K1 decreased 

Table 3   Univariable Cox models on DDFS (PACS04 trial)

Characteristics No. patients (No. 
events)

HR (95% CI)
p-value

Copy number
 CCND1 (ref: normal) 257 (47)
 Amplification 70 (18) 1.44 (0.84; 2.48)

p = 0.2
 FGFR1 (ref: normal) 267 (45)
 Amplification 49 (15) 2.18 (1.21; 3.91)

p < 0.01
 Deletion 11 (5) 3.22 (1.28; 8.12)

p = 0.01
 ZNF217 (ref: normal) 286 (52)
 Amplification 41 (13) 1.99 (1.08; 3.65)

p = 0.03
ERBB2 (ref: normal) 298 (57)
 Amplification 17 (4) 1.24 (0.45; 3.44)

p = 0.7
Deletion 12 (4) 1.85 (0.67; 5.09)

p = 0.2
Mutation
 PIK3CA (ref: normal) 232 (43)
 Mutation 95 (22) 1.17 (0.7; 1.96)

p = 0.5
 TP53 (ref: normal) 279 (52)
 Mutation 48 (13) 1.55 (0.84; 2.86)

p = 0.2
 MAP3K1 (ref: normal) 281 (64)
 Mutation 46 (1) 0.09 (0.01; 0.63)

p = 0.02
 BRCA2 (ref: normal) 303 (60)
 Mutation 24 (5) 1.03 (0.41; 2.57)

p = 0.9
 ATM (ref: normal) 304 (59)
 Mutation 23 (6) 1.46 (0.63; 3.39)

p = 0.4
 GATA3 (ref: normal) 305 (60)
 Mutation 22 (5) 1.15 (0.46; 2.86)

p = 0.8
 NF1 (ref: normal) 309 (62)
 Mutation 18 (3) 0.9 (0.28; 2.85)

p = 0.8
 MTOR (ref: normal) 313 (62)
 Mutation 14 (3) 1 (0.31; 3.18)

p = 1
 AKT1 (ref: normal) 314 (61)
 Mutation 13 (4) 1.67 (0.60; 4.59)

p = 0.3
 BRCA1 (ref: normal) 314 (62)
 Mutation 13 (3) 1.33 (0.42; 4.24)

p = 0.6
 TSC2 (ref: normal) 314 (62)
 Mutation 13 (3) 1.21 (0.38; 3.86)

p = 0.7
 MAP2K4 (ref: normal) 316 (64)

Table 3   (continued)

Characteristics No. patients (No. 
events)

HR (95% CI)
p-value

 Mutation 11 (1) 0.49 (0.07; 3.52)
p = 0.5
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this risk. Applying our genomic score in the external data 
set, the Kaplan–Meier analysis indicated that it was sig-
nificantly associated ( pBCSS < 0.001 and pOS = 0.0015) 
with survival (Fig. 8). It provides additional informa-
tion ( nBCSS = 1333, n - eventBCSS = 392, �2

BCSS
 = 15.39, 

p
BCSS

 < 0.001 and n
OS

 = 1333, n - eventOS = 763, �2
OS

 = 5.62, 
pOS = 0.02) to CP model. The detail of CP + GS model 
is given in Supplementary Table S11. The results were 
consistent with the results found in the training data. The 
patients’ characteristics from the METABRIC study are 

described in supplementary Table S6. In the validation 
data set, the genomic score was validated on all patients 
with HR+ and HER2- BC without distinguishing patients 
with lymph node invasion to maximize statistical power. A 
sensitivity analysis was conducted looking only at the pop-
ulation of patients with lymph node-positive disease. In 
univariable analysis, the genomic score was significantly 
associated ( pBCSS < 0.01) with BCSS but less strongly 
with OS ( p

OS
 = 0.07) (Supplementary Figure S8). In the 

multivariable analysis, in addition to CP parameters, it 

Fig. 3   Survival curves according to copy number status of well-
known genes in the training data (PACS04 trial). N number of 
patients, N-event number of events. Normal: copy number equal to 2; 

Amplification: copy number greater than 4; Deletion: copy number 
less than 1; p: p value associated with the log-rank test
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Table 4   Multivariable Cox models on DDFS (PACS04 trial)

No. patients number of patients, No. event number of events, Q1 first quartile, Q3 third quartile, CP clinicopathological Cox model including 
age, tumor size, tumor grade, lymph node status, ER, and PR. HR (95% CI), hazard ratio (95% confidence interval)

Characteristics No. patients (No. events) 
or Median [Q1-Q3]

CP 
HR (95% CI)
p-value

CP + MAP3K1 + FGFR1 + ZNF217 
HR (95% CI)
p-value

CP + MAP3K1 + FGFR1 
HR (95% CI)
p-value

Age at randomization (years), linear 52 [45–57] 0.99 (0.96; 1.02)
p = 0.5

1.003 (0.97; 1.03)
p = 0.9

1.00 (0.97; 1.03)
p = 1

Age at randomization (years), nonlinear –
p = 0.3

–
p = 0.3

–
p = 0.2

Tumor size (mm) 20 [15–30] 1.02 (1.01; 1.03)
p < 0.001

1.02 (1.01; 1.03)
p < 0.001

1.02 (1.01; 1.03)
p < 0.001

Tumor grade (ref: Well differentiated) 58 (5)
Moderately differentiated 175 (32) 1.69 (0.64; 4.45)

p = 0.3
1.57 (0.59; 4.18)
p = 0.4

1.58 (0.59; 4.20)
p = 0.4

Poorly differentiated 74 (21) 2.5 (0.9; 6.97)
p = 0.08

2.08 (0.72; 5.94)
p = 0.2

2.26 (0.80; 6.40)
p = 0.1

Lymph node status (ref: 1–3) 211 (28)
4–9 72 (21) 2.19 (1.23; 3.9)

p = 0.007
2.59 (1.42; 4.73)
p = 0.002

2.56 (1.40; 4.68)
p = 0.002

≥ 24 (9) 2.73 (1.24; 5.98)
p = 0.01

3.47 (1.55; 7.79)
p = 0.003

3.24 (1.46; 7.21)
p = 0.004

log-transformed ER 4.6 [4.4–4.6] 1.15 (0.64; 2.08)
p = 0.6

0.97 (0.49; 1.90)
p = 0.9

0.95 (0.48; 1.88)
p = 0.9

log-transformed PR, linear 4.26 [2.4–4.6] 0.98 (0.82; 1.17)
p = 0.8

1.04 (0.86; 1.24)
p = 0.7

1.04 (0.87; 1.25)
p = 0.6

log-transformed PR, nonlinear –
p = 0.2

–
p = 0.5

–
p = 0.5

MAP3K1 (ref: normal) 265 (57)
Mutation 42 (1) 0.10 (0.01; 0.82)

p = 0.03
0.10 (0.01; 0.78)
p = 0.03

FGFR1 (ref: normal) 251 (41)
Amplification 47 (14) 2.37 (1.21; 4.64)

p = 0.01
2.44 (1.25; 4.76)
p = 0.009

Deletion 9 (3) 3.08 (0.81; 11.80)
p = 0.1

3.23 (0.88; 11.88)
p = 0.08

ZNF217 (ref: normal) 271 (48)
Amplification 36 (10) 1.67 (0.79; 3.53)

p = 0.2
N-patients 307 307 307
N-events 58 58 58
Concordance 0.75 0.77 0.78
Likelihood ratio test p < 0.001 p < 0.001 p < 0.001

Table 5   Likelihood ratio test for 
multivariable Cox models on 
DDFS (PACS04 trial)

No. patients number of patients, No. event number of events, CP clinicopathological Cox model, including 
age, tumor size, tumor grade, lymph node status, ER, and PR. NULL null model, VS versus

Model No. patients No. events Likelihood 
Ratio (χ2)

p-value

CP VS CP + FGFR1 + ZNF217 + MAP3K1 307 58 16.69 0.002
CP VS CP + FGFR1 + MAP3K1 307 58 15.08 0.001
CP + FGFR1 + MAP3K1 VS 

CP + FGFR1 + MAP3K1 + ZNF217
307 58 1.62 0.2

CP VS CP + MAP3K1 307 58 7.49 0.006
CP VS CP + FGFR1 307 58 4.96 0.081
CP + MAP3K1 VS CP + MAP3K1 + FGFR1 307 58 7.58 0.02
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was strongly associated (HR = 1.25, 95% CI [1.04; 1.49], 
�
2
BCSS

 = 5.88, pBCSS = 0.01) with the BCSS but to a lesser 
extent with OS (HR = 1.09, 95% CI [0.97; 1.2], �2

OS
 = 1.91, 

pOS = 0.2) (Supplementary Table S14 and Table S15). The 
details of CP + FGFR1 + MAP3K1 model are given in sup-
plementary Table S12 and Table S13.

Discussion

In HR+/HER2− BC, a key aim of precision medicine is to 
tailor adjuvant clinical management based on individual 
risk of relapse. This BC subtype is a heterogeneous disease 
based on genomic characteristics. We therefore performed 

Fig. 5   Genomic score distribu-
tion (PACS04 trial)

Fig. 6   Survival curves according to the Genomic Score in the train-
ing data (PACS04 trial). DDFS distant disease-free survival, OS over-
all survival N number of patients, N-event number of events, p log-

rank p value. Low risk, MAP3K1 mutated. Moderate, MAP3K1 not 
mutated and FGFR1 not amplified. High risk, MAP3K1 not mutated 
and FGFR1 amplified
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a comprehensive analysis of a large population of patients 
with HR+/HER2− early BC, describing relevant genomic 
characteristics of these tumors and their associations with 
usual CP characteristics as well as their prognosis. The 
analysis indicated that FGFR1 copy number and MAP3K1 
mutation added strong complementary information to CP 
features in determining the risk of distant relapse. FGFR1 
amplification was identified as an independent risk fac-
tor while MAP3K1 mutation was associated with a pro-
tective effect. These results are consistent with previous 
studies [25, 26]. FGFR1 gene encodes a tyrosine kinase 
receptor that plays an important role in the development 

of BC and amplification of FGFR1 has oncogenic proper-
ties. Recently, it has been shown that activation of FGFR1 
drives the invasive behavior of BC cells [25]. MAP3K1, a 
serine-threonine kinase, mediates apoptosis through acti-
vation of JNK pro-apoptosis protein; however, MAP3K1 
mutations are associated with a low proliferation index and 
a low tumor grade [18].

In our analysis, ERBB2 amplification was not associated 
with DDFS in univariable analysis. This result was expected 
because our BC subgroup is HR-positive and HER2-
negative. Although ZNF217 amplification was strongly 
associated with an increased risk of distant disease in the 

Fig. 7   Survival curves according to genomic characteristics (METABRIC trial). N number of patients, N-event number of events, p log-rank 
p-value
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univariable analysis, it did not remain significant in the mul-
tivariable analysis. ZNF217 did not provide any information 
to CP + FGFR1 + MAP3K1 model, probably because it was 
slightly correlated with the tumor grade and mutational sta-
tus of the MAP3K1 gene.

We  r e t r i eve d  t h e  ge n o m i c  p a r t  o f  t h e 
CP + FGFR1 + MAP3K1 model to create a genomic score. 
This score adjusted with CP features provided additional 
information to the initial CP model in determining the risk 
of death. The division of the score into three relevant cat-
egories made it possible to distinguish different levels of 
risk. Patients with a mutation of the MAP3K1 gene have a 
very good prognosis. Those with no alteration of FGFR1 
and MAP3K1 genes have a moderate risk. And finally, those 
with an amplification of FGFR1 gene and no mutation of 
MAP3K1 gene have a higher risk. In the validation sample 
(METABRIC), the results were in line with the results found 
in the training sample (PACS04). FGFR1 amplification and 
MAP3K1 mutation were both associated with BCSS. Using 
the score that was established in the training data, the results 
showed that it added relevant information to the CP model in 
determining the risk of relapse (local and distant) and death. 
In the subset of patients with lymph node-positive disease in 
the METABRIC study, the genomic score continued to add 
additional prognostic information for BCSS.

However, our study has several limitations. In PACS04 
trial, the sample size was relatively small with few events 
and the proliferation biomarker (Ki-67) was only available 

on a small subset of patients. In the METABRIC study, the 
DDFS endpoint was not available and the type of chemo-
therapy was not specified. We can also note that in the three 
prognostic groups generated, frequencies are relatively high 
in the training set (PACS04) and lower in the external valida-
tion data (METABRIC).

From a clinical standpoint, our study proposes a new way 
of classifying patients with HR+ and HER2- lymph node-
positive BC based on known genes. Taking into account 
the copy number of FGFR1 and the mutational status of 
MAP3K1 improves the understanding of the prognosis and 
can help decision-making for the adjuvant treatment.

Conclusion

Currently, only CP parameters are taken into account to 
predict distant disease and guide HR+ and HER2− lymph 
node-positive BC adjuvant treatment. Our study showed that 
in addition to CP parameters, copy number alterations of 
FGFR1 gene and mutational status of MAP3K1 gene could 
improve distant disease prediction. FGFR1 amplification 
was associated with a high risk of distant disease whereas 
MAP3K1 mutation was associated with a low risk of distant 
disease.

The genomic score combining both genomic features 
classified patients into three subgroups with different 
prognosis: low risk (MAP3K1 mutated), moderate risk 

Fig. 8   Survival curves according to the Genomic Score in the vali-
dation data (METABRIC trial). BCSS breast cancer-specific survival, 
OS overall survival, N number of patients. N-event number of events. 

p p-value associated with the log-rank test. Low risk, MAP3K1 
mutated. Moderate, MAP3K1 not mutated and FGFR1 not amplified. 
High risk, MAP3K1 not mutated and FGFR1 amplified
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(MAP3K1 not mutated and FGFR1 not amplified), and 
high risk (MAP3K1 not mutated and FGFR1 amplified). 
Consideration of FGFR1 and MAP3K1 could be a new way 
to refine the treatment decision-making.
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