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Multimodal liquid biopsy for early monitoring and outcome
prediction of chemotherapy in metastatic breast cancer
Amanda Bortolini Silveira1,21, François-Clément Bidard1,2,3,21, Marie-Laure Tanguy4, Elodie Girard5, Olivier Trédan6, Coraline Dubot2,
William Jacot 7, Anthony Goncalves8, Marc Debled9, Christelle Levy10, Jean-Marc Ferrero11, Christelle Jouannaud12, Maria Rios13,
Marie-Ange Mouret-Reynier14, Florence Dalenc15, Caroline Hego1, Aurore Rampanou1, Benoit Albaud16, Sylvain Baulande16,
Frédérique Berger 4, Jérôme Lemonnier17, Shufang Renault1, Isabelle Desmoulins18, Charlotte Proudhon 1,19,21 and
Jean-Yves Pierga 1,2,20,21✉

Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are two cancer-derived blood biomarkers that inform on patient
prognosis and treatment efficacy in breast cancer. We prospectively evaluated the clinical validity of quantifying both CTCs
(CellSearch) and ctDNA (targeted next-generation sequencing). Their combined value as prognostic and early monitoring markers
was assessed in 198 HER2-negative metastatic breast cancer patients. All patients were included in the prospective multicenter
UCBG study COMET (NCT01745757) and treated by first-line chemotherapy with weekly paclitaxel and bevacizumab. Blood samples
were obtained at baseline and before the second cycle of chemotherapy. At baseline, CTCs and ctDNA were respectively detected
in 72 and 74% of patients and were moderately correlated (Kendall’s τ= 0.3). Only 26 (13%) patients had neither detectable ctDNA
nor CTCs. Variants were most frequently observed in TP53 and PIK3CA genes. KMT2C/MLL3 variants detected in ctDNA were
significantly associated with a lower CTC count, while the opposite trend was seen with GATA3 alterations. Both CTC and ctDNA
levels at baseline and after four weeks of treatment were correlated with survival. For progression-free and overall survival, the best
multivariate prognostic model included tumor subtype (triple negative vs other), grade (grade 3 vs other), ctDNA variant allele
frequency (VAF) at baseline (per 10% increase), and CTC count at four weeks (≥5CTC/7.5 mL). Overall, this study demonstrates that
CTCs and ctDNA have nonoverlapping detection profiles and complementary prognostic values in metastatic breast cancer
patients. A comprehensive liquid-biopsy approach may involve simultaneous detection of ctDNA and CTCs.
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INTRODUCTION
Liquid biopsy, a minimally invasive approach, has shown in the
last decades prominent validity for diagnosis, prognosis, and for
monitoring treatment efficacy in different cancer types. Through-
out the years, several studies have explored the validity of
different circulating analytes, including circulating tumor cells
(CTCs), circulating tumor DNA (ctDNA), cell-free RNAs (mRNAs,
long noncoding RNAs, and microRNAs), extracellular vesicles, and
proteins markers. However, CTCs and ctDNA remain the most
widely studied circulating biomarkers so far.
CTCs, released from the primary tumor or metastatic lesions,

can be detected by immunocytological techniques1 and have
been reported to play a key role in cancer metastasis through
intravasation into the bloodstream and dissemination at distant
sites2. In early-stage breast cancer (BC) patients, CTC enumeration
has been used as an independent and powerful biomarker for
survival and relapse prognostication3,4. This was also demon-
strated in patients with metastatic breast cancer (mBC) where a

decrease in CTC counts 3–5 weeks after the start of a new line of
therapy correlates with treatment efficacy5–7.
ctDNA, a fraction of total cell-free DNA (cfDNA), is released into

the circulation by tumor cells undergoing apoptosis/necrosis or by
active secretion and its biological role is currently not known8.
Using next-generation sequencing (NGS) or droplet-based digital
PCR (ddPCR) technologies, multiple studies have demonstrated
the utility of ctDNA detection as a prognostic biomarker for
patients’ survival in early-stage and metastatic BC patients9–11.
Unlike tumor tissue biopsies, ctDNA analysis is spatially unbiased,
which allows systematic investigation of tumor molecular altera-
tions and improves the detection of potential actionable
mutations. ctDNA profiling has been successfully used in breast
cancer patients to explore intratumor clonal heterogeneity and
early disease evolution12–14 or as a diagnostic tool for treatment
selection15,16. The use of CTCs and ctDNA biomarkers, therefore,
provides real-time assessment of tumor dynamics and represents
a major tool for selecting the best therapy and for monitoring
treatment efficacy17.
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Until now, the clinical significance of CTCs and ctDNA
biomarkers has mostly been assessed independently and only a
limited number of studies have quantified both biomarkers in
parallel using the same blood draws from the same patients. In the
present study, we have investigated the clinical value of
concomitant analysis of CTCs and ctDNA. As part of a large
prospective biomarker study (COMET) conducted in HER2-
negative mBC patients treated by first-line chemotherapy, CTCs
and ctDNA were analyzed at two time points: prior to treatment
and after four weeks of first-line chemotherapy. The detection
profiles and prognostic values of these two circulating biomarkers
were then compared to understand their overlap and comple-
mentary contribution in mBC patients’ management.

RESULTS
CTC enumeration and ctDNA detection at baseline and their
associations with patients’ characteristics
Out of the 510 patients enrolled in the whole COMET study,
analyses were performed on the 198 consecutive patients for
whom CTC counts and ctDNA measurements were available at
baseline (study flow chart in Supplementary Fig. 1). Clinical and
pathological characteristics of this subset of 198 patients are
displayed in Table 1. At baseline, 142 (72%) patients had one or
more CTCs and 98 (49%) patients had five or more CTCs detected
in 7.5 mL of blood (median: 4 CTC, range: 0–30,000). Variants were
detected in 147 patients (Supplementary Table 1). A total of 251
single-nucleotide variants and 78 small indels were identified
among the 54 genes targeted by the NGS approach (Supplemen-
tary Data 1). The median number of mutated genes per baseline
sample was 1 (range 0–9) in the whole population and two in the
147 patients with detected ctDNA. Fifty-one (26%), 53 (27%), and
94 (47%) patients displayed zero, one, or more than one mutated
gene in their baseline ctDNA sample, respectively. Variants were
most frequently observed in TP53 and PIK3CA genes (Fig. 1).
Associations between the two blood tumor markers examined

as dichotomized variables and patient characteristics are shown in
Table 1. In the population of 147 patients with detectable ctDNA
(i.e., with at least one variant detected), TP53 variants were more
often found in younger, premenopausal patients with triple-
negative or grade-3 breast cancers, with a higher number of
metastatic sites or synchronous metastasis. PIK3CA variants were
more frequent but not restricted to HR-positive cancers and were
mostly observed in premenopausal patients. Besides one variant
with no known pathogenic function (P-123), ESR1 variants
associated with hormone-therapy resistance were restricted to
the HR-positive cancers and more frequent in patients with liver
metastases.
Moreover, considering blood biomarkers as continuous vari-

ables, we detected the associations between high fractions of
ctDNA and high tumor grade, triple-negative status, altered
performance status, and high number of metastatic sites. CTCs
were higher in patients with lobular subtypes, altered perfor-
mance status, and in the presence of liver or bone metastases
(Supplementary Table 2).

Correlation between CTC enumeration and ctDNA detection
In patients with detectable ctDNA (n= 147), a reporter variant was
selected to analyze ctDNA-detection profiles and prognostic
values in comparison with CTC measurements. The median allelic
frequency of reporter variants at baseline was 7.6% (range
0.6–84.8%). CTC counts and ctDNA levels in each patient were
moderately correlated (Fig. 2A; Kendall’s τ= 0.3, p < 0.001). At
baseline, 82 (41%) patients had detectable ctDNA and five or more
CTCs detected, 35 (18%) patients had no detectable ctDNA and
less than 5 CTCs detected, and only 26 (13%) had neither ctDNA
nor CTCs detected.

The number of CTCs detected in patients with certain mutated
genes was then compared with the rest of the population with
detectable ctDNA but no variant in the corresponding gene
(Supplementary Fig. 2). We observed that the 16 patients with a
KMT2C/MLL3 variant had a lower CTC count (median 1.5 CTC, IQR
0–5) than the 131 patients with no KMT2C/MLL3 variant detected
(median 10 CTC, IQR 1–59.5, p= 0.007). Twenty patients had a
GATA3 variant and demonstrated an opposite trend, with an
overall higher CTC count (median: 27 CTC, IQR: 4–74) than the 120
patients with no GATA3 variant detected (median 6 CTCs, IQR
1–40; p= 0.07).

Prognostic value of CTCs and ctDNA at baseline
The prognostic impact of CTCs or ctDNA levels was first assessed
at baseline independently. Both biomarkers were considered as
dichotomized and continuous variables in univariate analysis.
Shorter progression-free survival (PFS) and overall survival (OS)
were observed in patients with higher CTC counts (Supplementary
Fig. 3A–B; Supplementary Table 5) or higher ctDNA VAFs
(Supplementary Fig. 3C–D; Supplementary Table 5). OS and PFS
for combined CTC and ctDNA are shown in Figs. 3A and 3C (see
also Table S5 for the corresponding CTC counts and ctDNA VAFs).
When considered as continuous variables, baseline ctDNA and

CTC levels demonstrated a linear and log-linear impact, respec-
tively, on the patient PFS and OS (Supplementary Fig. 4). There
was no significant interaction between VAF impact on survival and
individual gene (Supplementary Fig. 5).
Alterations in specific genes were also investigated to evaluate

whether they have a prognostic impact on patients’ survival. This
analysis was restricted to genes with variants detected in at least
15 patients (TP53, PIK3CA, GATA3, ESR1, KMT2C, and CDH1). We
observed that patients with TP53 variants displayed a worse
overall survival (Supplementary Fig. 6). This was also significant in
the subgroup of patients with HR-positive mBC. On the other
hand, the detection of ESR1 variants had no significant prognostic
impact in this cohort, mostly composed of endocrine-resistant or
HR-negative mBC (data not shown).
Finally, the added prognostic value of both CTCs and ctDNA to a

prognostic model based on patient clinical and pathological
characteristics was evaluated by different combinations. For PFS,
the model included HR status, number of metastatic sites, tumor
grade, and metastasis-free interval (CP model #1). For OS, the
model included HR status, tumor grade, and metastatic site
(visceral vs other, CP model #2). At baseline, the added value of
both CTCs and ctDNA was higher when considered as continuous
variables (linear or log-linear coding). At four weeks, biomarker
levels gave a best fit when considered as dichotomized variables
(<5 vs ≥5 for CTC and detectable vs not detectable for ctDNA). For
PFS, we found that the increase in the prognostication accuracy of
the model was not significant for CTC count at baseline (p= 0.2),
while adding ctDNA VAF to the CP model #1 significantly
increased the performance of the model (p= 0.004) (Table 2).
Interestingly, for OS, both ctDNA and CTC levels at baseline
significantly increased the prognostication accuracy of CP model
#2 (p < 0.0001 and p= 0.008, respectively).

CTC enumeration and ctDNA detection at four weeks
CTC enumeration and ctDNA levels in patients were obtained after
four weeks of treatment (196 patients had CTCs quantified, 191
had ctDNA quantified, and 189 both, Supplementary Fig. 1). Out of
the 196 patients with CTCs quantified at four weeks, 73 (37%) had
one or more CTCs and 43 (22%) had five or more CTCs per 7.5 mL
of blood (median: 0 CTC, range: 0–27,710). Regarding ctDNA,
among the 191 patients assessed at four weeks, 124 (65%), 31
(16%), and 36 (19%) patients displayed zero, one, or more than
one mutated gene, respectively. In patients with at least one
variant detected at baseline, the median allelic frequency of
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reporter variants at four weeks was 0% (range 0–55%). Among the
189 patients with both CTC and ctDNA quantified at four weeks,
25 (13%) patients had detectable ctDNA and 5 or more CTCs and
94 (50%) had neither ctDNA nor CTCs detected. Overall, the
detection rates at four weeks were significantly lower than at
baseline for both tumor markers (both p < 0.0001) and were again

moderately correlated (Fig. 2B; Kendall’s τ= 0.4, p < 0.001).
Supplementary Table 3 depicts the different trajectories in terms
of level changes for both biomarkers during the first four weeks of
treatment. While CTC count and ctDNA levels had similar
trajectories for 82 (43%) patients (both increasing or decreasing,
highlighted in blue), an opposite trajectory (one marker becoming

Table 1. Patient characteristics and association with circulating tumor biomarkers at baseline.

All patients (n= 198) Patients with at least 1 variant detected in cfDNA
(n= 147)

All patients ≥5CTC P value ctDNA
detected

P value TP53
variant
detected

P value PIK3CA
variant
detected

P value ESR1
variant
detected

P value

N patients 198 98 147 65 43 17

Median age (range) 57 (29–77) 56 (33–76) 0.29 56
(29–77)

0.45 52
(29–73)

0.03 55
(33–74)

0.60 60
(38–74)

0.07

Meno. status Premenopausal 55 (28%) 32 (58%) 0.20 41 (75%) 0.99 24 (59%) 0.03 16 (39%) 0.04 3 (7%) 0.4

Postmenopausal 141 (72%) 66 (47%) 104 (74%) 39 (38%) 27 (26%) 14 (14%)

Histology IC-NST and other 171 (88%) 79 (46%) 0.09 129 (75%) 0.50 60 (46%) 0.37 38 (30%) 0.56 15 (12%) 0.99

Lobular 24 (12%) 16 (67%) 16 (67%) 5 (33%) 4 (25%) 1 (6%)

Tumor grade 1 or 2 101 (56%) 46 (45%) 0.20 73 (72%) 0.66 22 (30%) <10−3 21 (29%) 0.44 11 (15%) 0.2

3 80 (44%) 45 (56%) 61 (76%) 38 (62%) 19 (31%) 4 (7%)

Subtype HR+HER2- 153 (77%) 77 (50%) 0.79 112 (73%) 0.67 35 (31%) <10−3 38 (34%) 0.05 16 (14%) 0.07

Triple Negative 45 (23%) 21 (47%) 35 (78%) 30 (86%) 5 (14%) 1 (3%)*

PS 0 106 (54%) 50 (47%) 0.58 78 (74%) 0.95 33 (42%) 0.74 24 (31%) 0.83 8 (10%) 0.8

1 or 2 92 (46%) 48 (52%) 69 (75%) 32 (46%) 19 (28%) 9 (13%)

MFI Synchronous 40 (21%) 20 (50%) 0.99 33 (83%) 0.25 20 (59%) 0.05 13 (39%) 0.13 1(3%) 0.12

>6 months 154 (79%) 75 (49%) 111 (72%) 44 (40%) 29 (26%) 15 (14%)

N of met. sites 1, 2 121 (61%) 55 (46%) 0.23 83 (69%) 0.04 28 (34%) 0.008 25 (30%) 0.92 12(15%) 0.3

≥3 76 (39%) 42 (55%) 63 (83%) 36 (57%) 18 (29%) 5 (8%)

Met. sites Bone only 18 (9%) 9 (50%) 0.16 14 (78%) 0.05 4 (29%) 0.4 4 (29%) 0.79 1 (7%) 0.05

Liver+ /- other 99 (50%) 55 (56%) 80 (81%) 38 (48%) 20 (25%) 14 (18%)

Other 80 (41%) 33 (41%) 52 (65%) 22 (42%) 19 (37%) 2 (4%)

CTCs and ctDNA detection rates are given for n= 198 patients at baseline. The detection rate of TP53, PIK3CA and ESR1 genes is given for the 147 patients for
which ctDNA was detected (i.e., with at least one variant detected). Several clinicopathological features were not available explaining the missing patients in
some categories. cfDNA cell-free circulating DNA, ctDNA circulating tumor DNA, Meno. status menopausal status, IC-NST invasive carcinoma of no specific
type, PS Performance Status, MFI metastasis-free interval, N of met. sites number of metastatic sites, *Variant reported as nonpathogenic.

Fig. 1 Variant-detection rate in cfDNA according to CTC numbers at baseline (n= 147). Variant-detection rates are displayed for each gene
at baseline (n= 147 patients). VAF is colored by quartiles with higher VAF (>14%) in red, middle VAF (4 < VAF ≤ 14%) in orange, and lower VAF
in yellow (≤4%).
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lower or undetectable while the other increased, highlighted in
yellow) was observed in 28 (15%) patients.

Prognostic value of CTCs and ctDNA after four weeks of
treatment
In univariate analysis, CTCs and ctDNA levels at four weeks had a
significant prognostic impact on both PFS and OS, when
considered separately (Supplementary Fig. 7). OS and PFS for
combined parameters are shown in Figs. 3B and 3D. We then
evaluated the added prognostic value of CTCs or ctDNA level at
four weeks to the optimal baseline prognostic model (based on CP
model #1 and baseline ctDNA level for PFS and CP model #2,
baseline ctDNA level, and baseline CTC count for OS, as displayed
in Table 2). Both significantly increased the prognostication

accuracy of the model in the same proportion. Finally, the best
prognostic model for PFS included tumor subtype (triple negative
vs other), grade (grade 3 vs other), ctDNA VAF at baseline (per 10%
increase), and CTC count at four weeks (≥5CTC/7.5 mL) (Table 3).
Bootstrapping revealed moderate optimism of the model, with

a decrease of the c-statistic from 0.68 to 0.67 and a calibration
slope equal to 0.91. The variables retained in the best prognostic
model for OS were tumor subtype, grade, ctDNA VAF at baseline
(per 10% increase), and CTC count at four weeks (≥5CTC/7.5 mL).
The bootstrapped c-statistic of the OS model was 0.73 (equal to
the apparent c-statistic) and the calibration slope was 0.92.
Overall, the time-dependent area under the curve (AUC) for 12-
month PFS and OS status increased from 0.70 and 0.75 (models
with baseline clinical variables only) to 0.76 and 0.85 (full PFS and
OS models), respectively.

Fig. 3 Overall survival and progression-free survival according to the combination of CTC counts and ctDNA levels. OS curves by blood
biomarker status at baseline (a) and four weeks (b). PFS curves by blood biomarker status at baseline (c) and four weeks (d).

Fig. 2 Correlation between CTC counts and ctDNA levels (logarithmic scale). Each dot represents ctDNA variant allelic fractions (VAF) as a
function of CTCs counts (a at baseline, b at four weeks). ND ctDNA not detected. Dashed line highlights the 5 CTC thresholds.
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A normalization of the delta of ctDNA values and CTC counts
between baseline and four weeks was also performed with the use
of a Min–Max scaling (Supplementary Fig. 8). The HR associated
with scaled ctDNA variation (dichotomized at the median) was
1.46–95%, C.I. 1.008–2.112, p= 0.045 for OS and 1.36–95% C.I.
0.97–1.89, p= 0.07 for PFS. The HR associated with scaled CTC
count variation (dichotomized at the median) was 1.75–95%, C.I.
1.21–2.51, p= 0.003 for OS and 1.44–95%, C.I. 1.05–1.99, p= 0.03
for PFS.

DISCUSSION
As previously described5,6, CTCs were here detected in the
peripheral blood of up to 70–80% of mBC patients. They were
also associated with poor PFS and OS in multivariate analysis18,19.
As the molecular analysis of CTCs is challenging, many studies
concentrated on the enumeration of CTCs20. In contrast, ctDNA
can be comprehensively analyzed with a variety of methods on
archived plasma samples11,21. The proof-of-concept analysis

Table 2. Added value of blood tumor markers to prognostic models.

Comparison; timing & endpoint Parameter tested for added value LR test p-value

At baseline; progression-free survival

CP model #1 vs
CP model #1+ CTC(bsl)

CTC(bsl) 0.02

CP model #1 vs
CP model #1+ ctDNA(bsl)

ctDNA(bsl) 0.0005

CP model #1+ ctDNA(bsl) vs
CP model #1+ ctDNA(bsl)+ CTC(bsl)

CTC(bsl)

if ctDNA(bsl) known
0.2

CP model #1+ CTC(bsl) vs
CP model #1+ CTC(bsl)+ ctDNA(bsl)

ctDNA(bsl)

if CTC(bsl) known
0.004

At baseline; overall survival

CP model #2 vs
CP model #2+ CTC(bsl)

CTC(bsl) <0.0001

CP model #2 vs
CP model #2+ ctDNA(bsl)

ctDNA(bsl) <0.0001

CP model #2+ ctDNA(bsl) vs
CP model #2+ ctDNA(bsl)+ CTC(bsl)

CTC(bsl)

if ctDNA(bsl) known
0.008

CP model #2+ CTC(bsl) vs
CP model #2 + CTC(bsl)+ ctDNA(bsl)

ctDNA(bsl)

if CTC(bsl) known
<0.0001

At four weeks (landmark); progression-free survival

CP model #1+ ctDNA(bsl) vs
CP model #1+ ctDNA(bsl)+ CTC(4w)

CTC(4w) 0.02

CP model #1+ ctDNA(bsl) vs
CP model #1+ ctDNA(bsl)+ ctDNA(4w)

ctDNA(4w) 0.01

CP model #1+ ctDNA(bsl)+ ctDNA(4w) vs
CP model #1+ ctDNA(bsl)+ ctDNA(4w)+ CTC(4w)

CTC(4w)

if ctDNA(4w) known
0.1

CP model #1+ ctDNA(bsl)+ CTC(4w) vs
CP model #1+ ctDNA(bsl)+ CTC(4w)+ ctDNA(4w)

ctDNA(4w)

if CTC(4w) known
0.07

At four weeks (landmark); overall survival

CP model #2 + ctDNA(bsl)+ CTCbsl vs
CP model #2 + ctDNA(bsl)+ CTCbsl+ CTC(4w)

CTC(4w) 0.02

CP model #2 + ctDNA(bsl)+ CTCbsl vs
CP model #2 + ctDNA(bsl)+ CTCbsl+ ctDNA(4w)

ctDNA(4w) 0.04

CP model #2 + ctDNA(bsl)+ CTCbsl+ ctDNA(4w) vs
CP model #2 + ctDNA(bsl)+ CTCbsl+ ctDNA(4w)+ CTC(4w)

CTC(4w)

if ctDNA(4w) known
0.02

CP model #2 + ctDNA(bsl)+ CTCbsl+ CTC(4w) vs
CP model #2 + ctDNA(bsl)+ CTCbsl+ CTC(4w)+ ctDNA(4w)

ctDNA(4w)

if CTC(4w) known
0.05

CP model refers to the optimized prognostic models for PFS and OS. CP model #1 for PFS includes tumor subtype, grade, number of metastatic sites and
metachronous relapses. CP model #2 for OS includes tumor subtype, grade and presence of visceral metastases. LR likelihood ratio, bsl level at baseline, 4w
level at four weeks.

Table 3. Multivariate analysis for PFS and OS.

Progression Free Survival

H.R; 95%C.I P-value

Tumor subtype (triple negative vs other) 2.1; 1.4–3.1 0.0002

Tumor grade 3 vs other 1.5; 1.1–2.1 0.01

ctDNA at inclusion (per 10% increase) 1.2; 1.1–1.3 <0.0001

CTC count at four weeks (≥5CTC/7.5mL) 1.7; 1.2–2.5 0.005

Overall survival

H.R; 95%C.I P-value

Tumor subtype (triple negative vs other) 2.7; 1.7–4.3 <0.0001

Tumor grade 3 vs other 1.6; 1.1–2.3 0.01

ctDNA at inclusion (per 10% increase) 1.2; 1.1–1.3 0.0006

CTC count at four weeks (≥5CTC/7.5mL) 2.3; 1.5–3.4 0.0001
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showing that ctDNA is an informative, inherently specific, and
highly sensitive biomarker for mBC was first described by Dawson
et al. in 201322. Among the analytes tested, ctDNA provided the
earliest marker of treatment response compared with CA15-3 and
CTC count in a series of 30 patients. The prognostic value of ctDNA
detection was confirmed by a few larger studies23,24. Various
techniques for ctDNA detection and quantification have since
been reported25–27. COMET is the largest prospective study
assessing the respective prognostic values of CTCs and ctDNA
and their early changes during treatment in 189 mBC patients
homogeneously treated with first-line chemotherapy. Prior retro-
spective studies on cohorts of mBC reported a prognostic impact
for either one or both blood biomarkers, but the low patient
numbers did not allow concluding on their correlation and clinical
validity22,28–30. In a larger study, monitoring during treatment was
limited31. More recently, this complementarity has been reported
in the post-neoadjuvant setting at one time point after surgery32.
In this study, we observed a moderate correlation between

CTCs and ctDNA detection at baseline and at four weeks.
Interestingly, only 26 patients (13%) had neither ctDNA nor CTCs
detected at baseline. This suggests that, similar to serum markers
and CTCs18, combining ctDNA and CTCs could increase the
number of patients assessable for marker detection and monitor-
ing. The mutational landscape retrieved by ctDNA analysis was
consistent with prior reports in HER2-negative BC, PIK3CA and
TP53 being the two most frequent variants. As expected, TP53
variants were more often found in younger, premenopausal
patients with triple-negative or grade-3 BCs, and with a higher
number of metastatic sites. PIK3CA variants were more frequent
but not restricted to HR-positive cancers. Activating ESR1
mutations, which are selected as a mechanism of resistance to
endocrine therapy33, were restricted to HR-positive cancers, and
more frequently observed in patients with liver metastases. The
large size of the COMET study allowed investigating associations
between the tumor mutational landscape (retrieved by ctDNA
analysis) and CTC-detection rates. We found that mBC patients
with variants in the lysine (K)-specific methyltransferase 2 C gene
(KMT2C, formerly known as mixed-lineage leukemia 3, MLL3, a
histone methyltransferase involved in transcriptional coactivation)
had a lower CTC count at baseline. KMT2C is frequently mutated in
HR-positive breast cancer and associated with shorter PFS under
anti-estrogen therapy34. In a gastric model, KMT2C inactivation
promoted epithelial-to-mesenchymal transition and acquisition of
stem cell-like phenotypes35. This may account for the significantly
lower number of CTCs detected by the CellSearch system, which
detects EpCAM and cytokeratin-positive epithelial CTCs. In
addition, we observed a trend toward a higher CTC count in
patients with GATA3-mutated BC (p= 0.07). Such association was
previously reported in a smaller study36, and might be related to
the putative role of GATA3 in BC cell migration and dissemina-
tion37. Finally, in our series, somatic variants in CDH1 were seen in
both infiltrating lobular and ductal carcinoma patients, although
variants in this gene have been shown to be associated with
lobular histology38. Higher CTC counts as a continuous variable
were observed in patients with lobular cancers (p= 0.05).
However, we did not confirm the correlation between CDH1
variants and CTC count that was previously reported36.
We largely confirmed the validity of CTCs and ctDNA levels as

prognostic markers before and during therapy. In addition to
standard multivariate analyses, we measured whether one or both
blood biomarkers significantly improve the accuracy of multi-
variate clinicopathological models. This well-established statistical
method was already used to demonstrate the superiority of CTC
count over serum markers6. Both approaches showed that more
accurate prognostic information could be obtained when both
blood biomarkers are considered. In detail, the best prognostic
models for PFS and OS included ctDNA VAF at baseline (as a
continuous variable) and CTC count at four weeks (as a

dichotomized variable), highlighting that both blood biomarkers
have nonoverlapping and complementary clinical validities. These
results raise the question of using both markers for different
purposes: (1) detection rates of both CTCs and ctDNA at baseline
would help patient-survival prognostication and first-line strategy
choice and (2) quantification at four weeks would help monitoring
treatment efficacy. For this matter, CTC counts seem to outper-
form ctDNA. On the other side, ctDNA analysis at inclusion allows
to better apprehend the tumor mutational landscape. While
baseline CTC count demonstrated its utility in mBC patients as a
decision tool before initiating a first-line treatment with che-
motherapy or single-agent endocrine therapy39, CTC count
monitoring during treatment has not yet demonstrated its clinical
utility. In the SWOG 500 trial, patients whose mBC was resistant to
first-line chemotherapy (as indicated by persistently high CTC
count during therapy) did not benefit from the earlier introduction
of a second-line chemotherapy40. Clinical utility of early ctDNA
variation monitoring for mBC treatment remains also to be
demonstrated10. Consensus recommendations by the American
Society of Clinical Oncology have concluded that some ctDNA
assays have clinical validity and utility as a noninvasive tool to
assess the mutational landscape of a tumor15. However, none of
these assays has been fully validated as an early monitoring tool
during therapy.
One limitation of our study is that the CellSearch method, as

explained above, may not detect CTCs that have lost epithelial
features, but no other method has demonstrated its validity on a
large scale at this time. Other limitations could be related to the
small size of the NGS panel used to analyze ctDNA, potential
inclusion of variants arising from clonal hematopoiesis, and
limited sensitivity of the assay to detect variants with allelic
frequency below 0.5%. However, higher sensitivity would not have
changed the limited correlation observed between the CTCs and
ctDNA as quantitative variables.
In that context, our study demonstrates that CTCs and ctDNA,

which stem from very different biological processes, should be
considered as yielding complementary and nonoverlapping
clinical information.

METHODS
Patients, treatment, and blood sampling
Patients used in this study were included in the multicentric prospective
biomarker study “COMET” (NCT01745757) and were treated with weekly
paclitaxel and bevacizumab as first-line chemotherapy. As per the 2012
European Medicine Agency label for bevacizumab, patients with triple-
negative or hormone-receptor (HR)-positive, HER2-negative mBC were
enrolled in this study. Other main inclusion criteria were written informed
consent, age >18 years old, performance status (PS) of 0–2, life expectancy
≥3 months, and no prior chemotherapy for mBC. All patients received
intravenous paclitaxel 90 mg/m2 on days 1, 8, and 15 with bevacizumab
10mg/kg on days 1 and 15. Treatment was repeated every four weeks,
until disease progression or unacceptable toxicity. The study was approved
by an ethics committee (Comité de Protection des Personnes “Ile de France
VII”) in June 2012 and registered under the following number
NCT01745757. The primary endpoint of the study was the change of
circulating endothelial cells (reported elsewhere41) and CTCs during
therapy. Patients gave informed consent to use leftover plasma and
tumor samples for further research, which allowed ctDNA analysis in this
study although not mentioned in the initial research plan. Blood was
drawn at baseline (prior to the start of chemotherapy) and at four weeks
(prior to the start of the second cycle of treatment). Both markers were
quantified in a central laboratory (The Circulating Tumor Biomarkers
Laboratory, Institut Curie, France).

CTC enumeration
CTC counts were determined using the standard CellSearch® assay. Blood
collected into CellSave® tubes was maintained at room temperature and
processed within 96 h by experienced operators. Technical details of the
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CellSearch® technique (Menarini Silicon Biosystems, Raritan, NJ) have been
described elsewhere1.

ctDNA analysis
For plasma isolation and cfDNA extraction, blood collected in EDTA tubes
was processed on-site within 2 h of blood draw. Tubes were first
centrifuged at 820 g for 10min at RT. The supernatant was then
centrifuged at 16000 g for 10min at 4 °C and stored at −80 °C. cfDNA
was extracted from 1 to 2mL of plasma using the QIAamp circulating
nucleic acid kit (Qiagen), following the manufacturer’s instructions. cfDNA
was stored at −20 °C and quantified using a LINE1 real-time PCR assay as
previously described (LINE1 forward primer: 5′-TCACTCAAAGCCGCTCAAC
TAC-3′; LINE1 reverse primer: 5′-TCTGCCTTCATTTCGTTATGTACC-3′)42.
For NGS library construction and sequencing, ctDNA detection was

performed by capture-based targeted resequencing using a custom panel
of 54 genes (Supplementary Table 1)43–45. Libraries were prepared using
the Kapa HyperPrep kit (Roche) following the manufacturer’s instructions
using xGen Dual Index UMI adapters from IDT, which contain one unique
molecular identifier (UMI). Hybridization steps were performed on batches
of 12 samples with the SeqCap EZ Accessory Kit V2 (Roche) and a custom
panel of SeqCap EZ probes (Roche) covering 220 kb of the human genome.
Sequencing was performed on an Illumina HiSeq 2500 instrument in
batches of 84 samples using the Rapid Run mode PE 100. Matched
archived tumor samples (available for 38 patients) were sequenced on an
Illumina MiSeq instrument using a v2 cartridge PE 150.
For sequencing data analysis, raw reads were demultiplexed following

IDT UMI recommendations and mapped to the hg19 human genome using
bwa v0.7.15 (mem algorithm, default parameters46). UMI consensus
sequences were generated and filtered using fgbio v0.5.0a-0 (com.
fulcrumgenomics) with the following parameters: minimum mapping
quality of 20 to keep an alignment, one error allowed per UMI. All UMIs
supported by at least one read were selected and mapped to the reference
genome. Only alignments intersecting the targeted sequence were kept
using BedTools (v2.21.047). Sequencing metrics for all libraries are
described in Supplementary Data 2. Average coverage and consensus
depths for cfDNA libraries were 2588X (range 121–9919) and 437X (range
6–1697), respectively. Average coverage for FFPE samples was 286X (range
58–616). Varscan2 (v2.4.148) was then used to call both SNVs and indels in
the alignment files considering or without considering UMI consensus
sequences. For FFPE samples, UMIs were not considered. Only variants
with an allelic frequency higher than 0.1% at a locus covered by at least
eight reads were reported (mapping quality at 20 and base quality at 13).
For FFPE samples, a minimum threshold of 5% VAF was used to filter out
the variants. Variants were then annotated using Annovar (July 2017
version49) and the following annotations: refGene (October 2015 version),
dbsnp147 and 1000 G (08/2015 version, all), Exome Sequencing Project
(ESP6500, all), ExAc project, Cosmic (v70), ICGC (v21), and prediction
algorithms such as SIFT, PolyPhen2, LRT, MutationTaster, PhyloP, and CADD
(version ljb26). No technical filtering (based on metrics linked to the
variants) was applied to cfDNA samples under the assumption that
the confidence in variants called through the consensus of UMIs is high.
The following filters were applied: (i) keep only exonic or splicing variant,
(ii) discard variants frequent in the population (in at least one database
with a VAF higher than 1%), and (iii) discard synonymous variants. A final
curated list of nonsynonymous variants was obtained by manual filtering
after visual inspection using IGV50. To increase the sensitivity of our
approach (see below), whenever a variant was identified in FFPE tumor
tissue, the same variant was systematically searched at baseline and week-
four plasma samples with and without considering the UMIs. The same
approach was applied to week four samples for variants identified in
baseline plasma samples considering the UMIs. For patients with multiple
variants detected in their cfDNA, a reporter variant was selected for
monitoring. Prioritization was given in this order to variants (1) with
positivity at baseline, (2) with positivity at four weeks, (3) with a COSMIC ID,
(4) which were SNVs, and (5) presenting the highest VAF at baseline. All
evaluations were carried out by qualified personnel with no knowledge of
the patient’s clinical status.
Three quality controls of the ctDNA-detection assay were used to assess

the sensitivity and the specificity of the custom-targeted resequencing
approach.
(1) First, Seraseq™ ctDNA Mutation Mix v2 reference material, including

40 mutations in 28 genes, was tested, among which 12 (7 SNVs, three
deletions, and two insertions) were covered by the panel (PIK3CA, PTEN,
KRAS, TP53, and GNAS). Thirty-six samples comprising three replicates of

Seraseq™ ctDNA Mutation Mix v2 at 0% (WT), 0.5, 1, and 2% VAF and at 3
different input quantities (8, 16, and 24 ng) were sequenced on an Illumina
HiSeq 2500 instrument as described above. Average coverage was 3655X
(3247–4226X) and consensus depth for UMIs was 817X (range 630–1036X).
Average sensitivity was 97% at 2% VAF, 55% at 1% VAF, and 9% at 0.5%
VAF for the UMI approach. When UMIs were not considered, average
sensitivity was increased to 100% at 2% VAF, 94% at 1% VAF, and 77% at
0.5% VAF. Specificity was then assessed by quantifying detection rates for
the same 12 variants in the WT reference material. We observed 100% and
97% specificity for the approach considering and not considering UMIs,
respectively.
(2) Second, the detection rates of variants reported in Supplementary

Data 1 were assessed in cfDNA obtained from 13 healthy individuals
purchased from EFS (Etablissement francais du sang, France). Only 10 of
the 329 variants found in patients were also detected in healthy controls.
However, the higher VAFs observed in patient samples (average= 8.16%,
median= 4.29% in patients vs average= 0.77%, median= 0.5% in healthy
controls), together with other supporting data such as detection at the
second time point or in tumor tissue, provided enough confidence for
considering those variants as true-positive calls in patients samples.
(3) Finally, archived tumor material of patients, who gave written

informed consent and treated at Institut Curie (available for 38 patients),
was retrospectively sequenced to evaluate if variants identified in plasma
samples were also observed in the tumor. These formalin-fixed paraffin-
embedded (FFPE) tissues were macrodissected to increase tumor cell
content prior to DNA extraction. DNA was extracted with the DNA FFPE
Tissue Kit (Qiagen) and sequenced with the same targeted NGS method.
Out of the 25 samples for which we obtained good-quality data, 24 (96%)
displayed all or at least half of the variants observed in plasma DNA
(Supplementary Data 1; P-94 and P-52 had 1/2 variant detected, P-129 and
P-142 had 3/4 variants detected). The only patient (P-52) with no match
between plasma and tissue had a single ESR1 (p.D538G) variant detected in
ctDNA, which was most likely absent from the primary tumor as these
alterations are frequently acquired in patients under hormone therapy. The
one variant not detected in P-142 was also in ESR1 (p.D538G).

Statistics
Associations between patient characteristics and blood biomarker levels
when considered as dichotomized variables were studied using chi-square
or Fischer’s exact test for categorical variables and Student’s t-test for age.
When considered as continuous variables, Mann–Whitney, Kruskall–Wallis,
or Student’s t-test were used for continuous data and Pearson correlation
test for age. Associations between patient characteristics and TP53, PIK3CA,
or ESR1 gene variant status were studied using chi-square or Fisher’s exact
test for categorical variables and Student’s t-test for age.
The correlation between CTC and ctDNA levels was assessed with the

Kendall’s tau rank correlation. The comparison of the distribution of CTC
levels according to the mutated gene status was performed with the
Mann–Whitney test. We studied the genes for which variants were present
in more than 10 patients (eight genes). No adjustments for multiple
comparisons were made. Differences between baseline and week-four
biomarker levels were studied with the use of the Wilcoxon signed-
rank test.
PFS was defined as the time to disease progression or death of any

cause. Overall survival was defined as the time to death, whatever the
cause. Both PFS and OS were measured from the inclusion or the date of
second sampling (four weeks) for the analyses based on biomarker levels
at four weeks (landmark analyses). PFS and OS curves based on separate
or combined CTC and ctDNA values were estimated by the Kaplan–Meier
method.
The added value of biomarkers was assessed by comparing log

likelihoods of models with and without biomarkers. We first fitted a model
with baseline clinical and pathological characteristics (CP model) using a
multivariable Cox regression analysis. We followed a backward stepwise-
selection procedure. The stopping rule for exclusion of predictors was
based on the Akaike information criterion (AIC). The variables tested in the
model were age (<50 vs ≥50 years), performance status (0 vs ≥1), tumor
subtype, tumor grade (≤2 vs 3), number of metastatic sites (≤2 vs 3),
metachronous relapses, and presence of visceral metastases. The CP model
was then compared with models in which biomarker levels were added
(Table 2) by means of the Log-Likelihood ratio test. For this comparison,
the added value of biomarkers was studied in two ways: after
dichotomization (<5 vs ≥5 for CTC and detectable vs not detectable for
ctDNA) and using restricted cubic splines (RCS) with four knots. For CTC, a
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log transformation was performed to deal with the skewed distribution.
When RCS was used, we tested for nonlinearity in the biomarker effect. If
no improvement in fit was found, the linear coding was used. To
determine which form of the biomarker (continuous or dichotomized)
should be kept in the model, models were compared with AIC. Optimal
prognostic models were evaluated by conducting a bootstrap validation of
model performance. Discrimination was assessed with the c statistic and
calibration with the calibration slope. All tests were two-sided. A P value of
less than 0.05 was considered to indicate statistical significance. All
statistical analyses were done with R software, version 3.4.2 (R Foundation
for Statistical Computing).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The ctDNA sequencing data are available in the NCBI Sequence Read Archive (SRA)
under accession number PRJNA745047. PFS, OS data, CTC counts, and ctDNA values
for individual participant after de-identification are publicly available in Supplemen-
tary Data 3 and Rdata. The sequence metrics used for ctDNA analysis are available in
Supplementary Data 2.
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