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Taselisib is a potent b-sparing phosphatidylinositol 3-kinase (PI3K) inhibitor

that, with endocrine therapy, improves outcomes in phosphatidylinositol-

4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA)-mutated (PIK3-

CAmut) advanced breast cancer. To understand alterations associated with

response to PI3K inhibition, we analysed circulating tumour DNA (ctDNA)

from participants enrolled in the SANDPIPER trial. Participants were desig-

nated as either PIK3CAmut or PIK3CA no mutation was detected (NMD)

per baseline ctDNA. The top mutated genes and tumour fraction estimates

identified were analysed for their association with outcomes. In participants

with PIK3CAmut ctDNA treated with taselisib + fulvestrant, tumour pro-

tein p53 (TP53; encoding p53) and fibroblast growth factor receptor 1

(FGFR1) alterations were associated with shorter progression-free survival

(PFS) compared to participants with NMD in these genes. Conversely,
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participants with PIK3CAmut ctDNA harbouring a neurofibromin 1

(NF1) alteration or high baseline tumour fraction estimate experienced

improved PFS upon treatment with taselisib + fulvestrant compared to

placebo + fulvestrant. Broadly, alterations in oestrogen receptor (ER), PI3K

and p53 pathway genes were associated with resistance to

taselisib + fulvestrant in participants with PIK3CAmut ctDNA. Altogether,

we demonstrated the impact of genomic (co-)alterations on outcomes with

one of the largest clinico-genomic datasets of ER+, HER2�, PIK3CAmut

breast cancer patients treated with a PI3K inhibitor.

1. Introduction

The phosphatidylinositol 3-kinase (PI3K) pathway is

one of the most frequently dysregulated signalling

pathways in human cancers and is involved in cell

growth and proliferation. Activating mutations in

PIK3CA, the gene that encodes the p110a catalytic

subunit of the Class I PI3K enzyme, leads to dysregu-

lation of PI3K signalling [1]. Across solid tumours,

PIK3CA mutations (PIK3CAmut) are commonly

observed in hormone receptor-positive, HER2-negative

(HR+, HER2�) breast cancers, with a prevalence of

~ 40% [2,3].

The clinical implementation of most PI3K inhibitors

to date has been challenged by the toxicities induced

by the inhibition of multiple p110 isoforms, particu-

larly pan-isoform inhibitors [4]. Taselisib is a potent

and selective b-sparing PI3K inhibitor [5] that was

investigated in combination with fulvestrant in the

phase III clinical trial, SANDPIPER, for patients with

oestrogen receptor-positive (ER+), HER2� locally

advanced or metastatic breast cancer (NCT02340221)

[6]. The study met its primary endpoint of improved

progression-free survival (PFS) with taselisib plus ful-

vestrant over placebo plus fulvestrant albeit with mod-

est clinical activity (7.4 vs. 5.4 months; HR = 0.70) [6].

Circulating tumour DNA (ctDNA) is emerging as

an important tool that appears representative of the

DNA and the overall tumour mutational landscape of

a patient’s disease state [7,8] and, for patients with

ER+, HER2� advanced breast cancer, has prognostic

and predictive response value [6,9,10]. Moreover, the

low-risk, non-invasive procedure of a blood draw

reduces the challenges associated with longitudinal

sampling that exists for tumour biopsies. Ultimately,

next-generation sequencing of ctDNA leverages the

relatively high concentrations of ctDNA detected in

patients with advanced cancer [11] to enable studies

that address questions about disease biology, tumour

heterogeneity and mechanisms of resistance to targeted

therapies, which were previously impractical because

of the infeasibility of repeated tumour biopsies.

To investigate the potential alterations associated

with response and/or resistance to endocrine therapy

and/or PI3K inhibition in ER+, HER2� breast cancer

tumours, we analysed baseline and end-of-treatment

ctDNA collected from SANDPIPER participants.

2. Materials and methods

2.1. Study design and participants

The study design has been previously described [6].

Briefly, SANDPIPER was a randomized, double-

blind, placebo-controlled, phase III trial evaluating

the efficacy and safety of taselisib plus fulvestrant

(TAS + FUL) versus placebo plus fulvestrant

(PBO + FUL) in post-menopausal women with ER+,
HER2� locally advanced or metastatic breast cancer

who had disease recurrence or progression during or

after aromatase inhibitor therapy. Participants were

randomized (2 : 1) to either the TAS + FUL or con-

trol (PBO + FUL) arm.

The SANDPIPER study protocol, including a

description of the exploratory biomarker analyses of all

randomized participants with and without PIK3CAmut

tumours, was approved by the relevant Institutional

Review Board/Ethics Committee at each participating

centre prior to study initiation. The trial conformed to

the Good Clinical Practice guidelines, the Declaration

of Helsinki and applicable local laws. All participants

provided signed informed consent, which included con-

sent for the biomarker analyses included in this study.

2.2. Plasma ctDNA collection

Plasma samples were collected at different time points

throughout the study. Herein, we present data from

samples taken at baseline, defined as before the first

dose of study treatment (pre-dose at Cycle 1 Day 1)
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and at the end of study treatment (EOT), defined as

the time-point when a participant ceases the study

treatment for reasons including but not limited to dis-

ease progression, toxicities, administrative reasons or

at the investigator’s discretion.

2.3. Comprehensive genomic profiling

Comprehensive genomic profiling of plasma samples

using the FoundationOne� Liquid (F1L) assay [12]

was performed in a CLIA-certified, CAP-accredited

laboratory (Foundation Medicine Inc., Cambridge,

MA, USA) using hybrid-capture, adapter ligation-

based libraries to identify genomic alterations (base

substitutions, small insertions and deletions, copy

number alterations and rearrangements/fusion events)

for 70 cancer-related genes. Processing of the sequence

data and identification of different classes of genomic

alterations were performed as previously described

[13]. Unless otherwise indicated, the analysis is focused

on alterations predicted to be pathogenic, defined as of

known or likely oncogenic significance. Participants

with PIK3CAmut were defined as those with ≥ 1 path-

ogenic single-nucleotide variant in the PIK3CA gene

detected in baseline ctDNA. Participants with PIK3CA

no mutation detected (NMD) were defined as those

without the detection of a pathogenic single-nucleotide

variant in the PIK3CA gene in baseline ctDNA.

Baseline plasma samples from 598 (94.8%) partici-

pants underwent genomic profiling, of which 508

(80.5%) samples were successfully sequenced and 90

samples (14.3%) failed processing. Baseline plasma

samples were not collected from 33 (5.2%) participants

due to withdrawal of consent or local regulatory test-

ing restrictions. EOT plasma samples underwent geno-

mic profiling for a subset of patients (15.8%; n = 100)

who exhibited clinical benefit, defined as the best over-

all response by the investigator of partial response,

complete response or stable disease with an extended

PFS of > 7 months on study treatment with evidence

of tumour shrinkage.

Quantification of the ctDNA fraction derived from

tumour cells in blood/plasma samples was performed as

previously described (unpublished data) [14] using two

complementary methods: the proprietary tumour frac-

tion estimator (TFE) and the maximum somatic allele

frequency (MSAF) method. Tumour fraction estimator

is based on a measure of tumour aneuploidy, and

MSAF uses allele fraction from somatic coding alter-

ations to estimate the ctDNA fraction. A high TFE was

defined as ≥ 10% based on prior work that suggested

10% correlated with the proportion of tumour DNA

adequate for high-confidence copy number calls [15].

2.4. Statistical analyses

Statistical analysis, computation and plotting were per-

formed using R version 3.6.1. Progression-free survival

data, from the clinical cut-off date for the primary anal-

ysis (15 October 2017) [6], were analysed descriptively

for each biomarker subgroup (mutated and NMD), and

for each treatment arm (PBO + FUL and

TAS + FUL). Kaplan–Meier survival analyses were

performed with the log-rank test using a Cox propor-

tional hazards regression model to obtain hazard ratios

and 95% confidence intervals. All statistical tests were

two-sided. To adjust for multiple comparisons, the

Benjamini–Hochberg correction was used, wherein sta-

tistical significance was defined as a Benjamini–
Hochberg-adjusted P-value (q-value) < 0.05.

3. Results

3.1. Analysis population and participant

demographics

As reported previously, 631 participants were enrolled

and randomly assigned (2 : 1) to either the taselisib

plus fulvestrant (TAS + FUL) or placebo plus fulves-

trant (PBO + FUL) arm of SANDPIPER. For the

clinical trial, participants were designated to either the

PIK3CAmut or PIK3CA no mutation detected

(NMD) cohort based on a centralized cobas�

PIK3CA Mutation Test result from formalin-fixed

paraffin-embedded tissue collected prior to randomiza-

tion, an eligibility criterion for all enrolled partici-

pants [6]. However, for the analysis herein, PIK3CA

mutation status was solely based on results from base-

line plasma using the F1L assay. Of note, the major-

ity of participants in SANDPIPER (97.0%) were

cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-na€ıve

given that they were randomized between 2015 and

2017 [6], which coincided with the initial approvals of

CDK4/6 inhibitors for HR+, HER2� breast cancer

treatment.

For the analyses herein (Fig. 1A), PIK3CA mutation

status (PIK3CAmut or PIK3CA NMD) was based on

the comprehensive genomic profiling (CGP) of baseline

plasma samples using the F1L assay. In the 508

(80.5%) participants for whom PIK3CA mutation sta-

tus is known from both the tissue-based cobas�

PIK3CA Mutation Test and the baseline ctDNA-based

F1L assay, the sensitivity is 78.2% and the specificity

is 86.7% [6]. These metrics may be reflective of the

methodological differences in the assays (PCR vs.

NGS) and the temporal differences in when the sam-

ples were collected; specifically, plasma samples were
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freshly collected during the study screening period,

whereas tumour tissue samples were largely archival

samples, many from the time of primary diagnosis. Of

the 339 participants with tumours classified as ctDNA

PIK3CAmut, 103 (30.4%) and 236 (69.6%) were trea-

ted with PBO + FUL and TAS + FUL respectively.

Of the 169 participants with tumours classified as

ctDNA PIK3CA NMD, 68 (40.2%) and 101 (59.8%)

were treated with PBO + FUL and TAS + FUL,

respectively. Demographics and disease characteristics

were largely similar between participants with PIK3-

CAmut and PIK3CA NMD ctDNA between the treat-

ment arms (Table S1), which was consistent with the

total SANDPIPER population [6]. Of note, bone

metastases (inclusive of participants with and without

bone-only disease) were found to occur at a higher fre-

quency in participants with pathogenic alterations

detected in baseline ctDNA than in participants with

no pathogenic alterations detected in baseline ctDNA

[77.8% (n = 369/474) vs. 38.2% (n = 13/34); P < 0.001,

Fisher’s Exact Test].

3.2. Genomic landscape of baseline ctDNA

Amongst the 339 participants with PIK3CAmut base-

line ctDNA, the baseline ctDNA of 20.6% (n = 70)

harboured ≥ 2 PIK3CA alterations and 19.5% (n = 66)

harboured ≥ 2 PIK3CA single-nucleotide variants

(SNVs). Of the cumulative 428 PIK3CA alterations

detected in baseline ctDNA from the PIK3CAmut par-

ticipants across both study arms, 0.9% (n = 4) were

copy number amplifications and 99.1% (n = 424;

Fig. S1, Table S2) were short variants, comprised

largely of well-defined ‘hotspot mutations’ in the

PIK3CA gene [i.e. occurring at amino acids H1047

(34.1%; n = 146/428), E545 (25.0%; n = 107/428) and

E542 (12.6%; n = 54/428)].

Amongst the 339 participants with PIK3CAmut

baseline ctDNA, the top genes co-altered with

PIK3CA were TP53 (44.2%), ESR1 (37.2%), CDH1

(17.4%), FGFR1 (11.5%), NF1 (10.6%), CHEK2

(10.0%) and PTEN (9.4%) (Fig. 1B). Amongst the

169 participants with PIK3CA NMD baseline ctDNA,

Fig. 1. Analysis of baseline ctDNA

from participants with ER+, HER2�
advanced breast cancer. (A)

Consort diagram for baseline

circulating tumour DNA (ctDNA)

analysis of participants enrolled in

the SANDPIPER study. 1PIK3CA

mutation status is determined by

detection of ≥ 1 pathogenic

PIK3CA mutation in baseline

ctDNA. 2Stratification is based on

the detection of ≥ 1 pathogenic

alteration in baseline ctDNA. (B)

Genomic landscape of baseline

ctDNA from participants with

PIK3CAmut, ER+, HER2�
advanced breast cancer. Only

genes that were altered in ≥ 1% of

samples (n ≥ 3) are shown in the

tile plot. Individual samples may

harbour ≥ 1 alterations of the same

variant type in a single gene (e.g.

≥ 1 TP53 short variants); this

information is not denoted in the

tile plot. ER, oestrogen receptor;

F1L, FoundationOne Liquid; FUL,

fulvestrant; HER2, human

epidermal growth factor receptor 2;

mut, mutated; n, sample size;

PBO, placebo; pts, patients; TAS,

taselisib.
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the top altered genes were TP53 (32.0%), ESR1

(28.4%), CDH1 (16.0%) and ATM (10.1%)

(Fig. S2C). Within each of the PIK3CAmut and

PIK3CA NMD cohorts, no statistically significant dif-

ference was observed in the frequency of altered genes

between treatment arms (q > 0.05, Fisher’s Exact Test;

Fig. S2A,B,D,E). Between the PIK3CAmut and

PIK3CA NMD cohorts, the frequency of DDR2 alter-

ations was significantly higher in the PIK3CAmut

cohort [7.7% (n = 26/339) vs. 1.2% (n = 2/169);

q = 0.050] (Fig. 1B, Fig. S2C). No other genes were

significantly differentially altered between the two

cohorts (q > 0.05, Fisher’s Exact Test). However,

between the PIK3CAmut and PIK3CA NMD cohorts,

there was a trend towards an increased frequency in

the PIK3CAmut cohort of alterations of the following

genes: TP53 [44.2% (n = 150/339) vs. 32.0% (n = 54/

169); P = 0.0094; q = 0.20], PTEN [9.4% (n = 32/339)

vs. 4.1% (n = 7/169); P = 0.035; q = 0.53] and NF1

[10.6% (n = 36/339) vs. 5.3% (n = 9/169); P = 0.048;

q = 0.53].

3.3. Genomic analysis of baseline ctDNA and

association with clinical outcomes

To evaluate whether any of the top altered genes in

the participants’ baseline ctDNA correlated with prog-

nosis or treatment outcomes, we next analysed the

association between genomic alteration status and PFS

within each of the treatment arms. Consistent with the

previously reported hazard ratios (HRs) [6], the PFS

HR based on PIK3CA ctDNA status was 0.65 between

treatment arms in the entire PIK3CAmut cohort and

0.85 between treatment arms for the entire PIK3CA

NMD cohort.

3.3.1. PIK3CAmut cohort

In participants treated with PBO + FUL, alterations

in TP53 [median PFS (mPFS): 2.0 vs. 6.7 months;

HR = 2.0 (95% confidence interval (CI) 1.3–3.1);
P = 0.0025; q = 0.069], PTEN [mPFS: 1.8 vs.

3.7 months; HR = 2.8 (95% CI 1.4–5.7); P = 0.011;

q = 0.14] and BRAF [mPFS: 1.8 vs. 3.7 months;

HR = 3.5 (95% CI 1.3–9.9); P = 0.042; q = 0.35]

trended towards shorter PFS compared to participants

with NMD in these genes (Figs 2A and 3A,B,

Fig. S3A). In participants treated with TAS + FUL,

alterations in TP53 [mPFS: 4.9 vs. 7.4 months;

HR = 1.9, 95% CI 1.4–2.6; q = 0.016] and FGFR1

[mPFS: 3.7 vs. 7.3 months; HR = 2.4, 95% CI 1.5–3.7;
q = 0.035] were significantly associated with shorter

PFS compared to participants with NMD in these

genes (Figs 2B and 3A,C, Fig. S3A). Furthermore, in

participants treated with TAS + FUL, alterations in

PTEN [mPFS: 5.5 vs. 7.2 months; HR = 1.8 (95% CI

1.1–2.8); P = 0.027; q = 0.26], AKT1 [mPFS: 3.2 vs.

7.2 months; HR = 2.9 (95% CI 1.2–7.2); P = 0.047;

q = 0.35], GNAS [mPFS: 2.8 vs. 7.2 months; HR = 3.1

(95% CI 1.5–6.3); P = 0.0084; q = 0.13] and MYC

[mPFS: 1.9 vs. 7.2 months; HR = 4.8 (95% CI 2.0–
12); P = 0.0057; q = 0.10] trended towards shorter PFS

compared to participants with NMD in these genes

(Figs 2B and 3B, Fig. S3A). Of the other top genes co-

altered with PIK3CA, alterations in ESR1, CDH1,

NF1 or CHEK2 were not associated with differential

PFS outcomes in either treatment arm (Fig. 2A,B,

Fig. S3A). Furthermore, a largely consistent PFS bene-

fit with TAS + FUL was observed, independent of the

genomic alteration status, with HR point estimates

< 1.0 for all subgroups assessed (Fig. 2C). Interest-

ingly, we observed a significantly longer PFS in partic-

ipants with NF1-altered ctDNA treated with

TAS + FUL compared to those treated with

PBO + FUL [mPFS: 5.7 vs. 1.9 months; HR = 0.28,

95% CI 0.11–0.67; q = 0.017] (Figs 2C and 3D).

3.3.2. PIK3CA NMD cohort

In participants treated with PBO + FUL, alterations

in TP53 [mPFS: 3.0 vs. 7.5 months; HR = 2.6, 95%

CI 1.4–4.9; P = 0.0062; q = 0.28], CDH1 [mPFS: 3.1

vs. 7.3 months; HR = 2.7, 95% CI 1.3–5.4; P = 0.012;

q = 0.28], ESR1 [mPFS: 4.7 vs. 7.3 months; HR = 2.1,

95% CI 1.1–3.9; P = 0.022; q = 0.28] and ERBB2

[mPFS: 2.0 vs. 6.9 months; HR = 5.3 (95% CI 1.5–
18); P = 0.029; q = 0.28] trended towards shorter PFS

compared to participants with NMD in these genes

(Figs S3B, S4A, S5A–C). In participants treated with

TAS + FUL, alterations in ESR1 [mPFS: 4.6 vs.

9.1 months; HR = 1.8, 95% CI 1.1–3.0; P = 0.020;

q = 0.28], BRAF [mPFS: 2.0 vs. 8.9 months; HR = 5.5

(95% CI 1.6–18); P = 0.025; q = 0.28] and PALB2

[mPFS: 3.6 vs. 8.9 months; HR = 1.7 (95% CI 1.7–
19); P = 0.022; q = 0.28] trended towards shorter PFS

compared to participants with NMD in these genes

(Figs S3B, S4B, S5C). ATM alterations were not asso-

ciated with differential PFS outcomes in either treat-

ment arm (Figs S3B and S5D). Additionally, we

observed a significantly longer PFS in participants

with either TP53-altered ctDNA [mPFS: 9.1 vs.

3.0 months; HR = 0.35, 95% CI 0.18–0.70; q = 0.025]

or CDH1-altered ctDNA [mPFS: 11.1 vs. 3.1 months;

HR = 0.21, 95% CI 0.065–0.69; q = 0.025] treated with
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Fig. 2. Association of progression-free survival (PFS) with (A, B) genomic alteration status and (C) study treatment in participants with PIK3-

CAmut baseline ctDNA. Association between PFS and genomic alteration status in (A) PBO + FUL-treated participants and (B) TAS + FUL-

treated participants. Only genes that were altered in ≥ 1% of samples (n ≥ 3) are shown in the volcano plots; the gene is annotated if the

nominal P-value < 0.05. The size of the bubble indicates the frequency of the alterations in the respective gene within the treatment arm.

(C) PFS by biomarker status of the top altered genes (altered in ≥ 10% of samples). Log-rank tests using a Cox proportional hazards regres-

sion model were used to obtain hazard ratio (HR) and P-values; statistical significance is defined by Benjamini–Hochberg-adjusted P-value (q-

value) < 0.05. CI, confidence interval; FUL, fulvestrant; mPFS, median progression-free survival; mut, mutated; n, sample size; PBO, pla-

cebo; TAS, taselisib.

6 Molecular Oncology (2023) � 2023 Genentech, Inc and The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Genomic picture of taselisib-treated breast cancer J. W. Chen et al.

 18780261, 0, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1878-0261.13416 by Icm

 - Institut D
u C

ancer D
e M

ontpellier, W
iley O

nline L
ibrary on [29/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TAS + FUL compared to those treated with

PBO + FUL (Figs S4C and S5A,B).

3.4. Baseline tumour fraction estimate and

clinical outcomes

Recent studies have reported that a larger treatment

effect is observed in ER+, HER2� advanced breast

cancer patients treated with ET when outcomes are

analysed by PIK3CAmut positivity in ctDNA com-

pared to the same analysis by tissue PIK3CAmut posi-

tivity [6,10,16]. Here, we further dissected the ctDNA-

positive population using the baseline tumour fraction

estimate (TFE), a measure of the quantity of ctDNA

shed from the tumour into circulation.

3.4.1. PIK3CAmut cohort

Within the PIK3CAmut cohort, high baseline TFE

was observed in 176 participants, of whom 54 (30.7%)

and 122 (69.3%) were treated with PBO + FUL and

TAS + FUL, respectively; low baseline TFE was

observed in 161 participants, of whom 49 (30.4%) and

112 (69.6%) were treated with PBO + FUL and

TAS + FUL respectively (Fig. 4A). Of the 339 baseline

samples evaluated, the tumour fractions

were inestimable for two samples. No statistically

significant difference was observed in the median base-

line TFE between treatment arms (TAS + FUL

median TFE = 0.14 vs. PBO + FUL median

TFE = 0.14; P = 0.59, Wilcoxon rank-sum test;

Fig. 3. Kaplan–Meier plots of progression-free survival (PFS) by treatment arm and alteration status for the PIK3CAmut cohort. PFS by

detectable (A) TP53, (B) PTEN, (C) FGFR1 and (D) NF1 alteration(s) in baseline ctDNA for PIK3CAmut participants in the PBO + FUL and

TAS + FUL arms. Tick marks indicate censoring events. Log-rank tests using a Cox proportional hazards regression model were used to

obtain hazard ratio (HR) and P-values. FGFR1, fibroblast growth factor receptor 1; FUL, fulvestrant; mPFS, median progression-free survival;

mut, mutated; mos, months; n, sample size; NF1, neurofibromin 1; NMD, no mutation detected; PBO, placebo; PTEN, Phosphatase and ten-

sin homolog; TAS, taselisib; TP53, tumour protein p53.
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Fig. 4B). Moreover, a strong correlation was observed

between TFE and PIK3CAmut allele fraction in base-

line ctDNA (Pearson’s correlation r = 0.82,

P < 0.001), suggesting that PIK3CA mutations were

predominantly clonal mutations rather than passenger

mutations. Median PFS was shorter for participants

with high baseline TFE compared to those with low

baseline TFE within the PBO + FUL (mPFS: 1.9 vs.

5.6 months; HR = 2.1, 95% CI 1.3–3.3; q = 0.0032)

and TAS + FUL (mPFS: 5.5 vs. 8.0 months;

HR = 2.0, 95% CI 1.4–2.7; q < 0.001) treatment arms

(Fig. 4C). Furthermore, of participants with high base-

line TFE, those who received TAS + FUL experienced

longer PFS compared to those who received

PBO + FUL [mPFS: 5.5 vs. 1.9 months; HR = 0.61

(0.43, 0.87); q = 0.013]. For participants with low base-

line TFE, despite a similar observed HR, the longer

PFS experienced by participants treated with

TAS + FUL compared to PBO + FUL was not statis-

tically significant [mPFS: 8.0 vs. 5.6 months;

HR = 0.68 (0.45, 1.0); q = 0.82].

3.4.2. PIK3CA NMD cohort

Within the PIK3CA NMD cohort, high baseline TFE

was observed in 52 participants and low baseline TFE

was observed in 109 participants (Fig. S6A). Of the

169 baseline samples evaluated, the tumour fractions

were inestimable for eight samples. With both treat-

ment arms combined, the median baseline TFE for the

PIK3CA NMD cohort was lower than that of the

PIK3CAmut cohort (PIK3CAmut median TFE = 0.14

vs. PIK3CA NMD median TFE = 0.02; P < 0.001,

Wilcoxon rank-sum test; Fig. S6B). Furthermore, no

statistically significant difference was observed in the

median baseline TFE between treatment arms

(TAS + FUL median TFE = 0.01 vs. PBO + FUL

median TFE = 0.02; P = 0.50, Wilcoxon rank-sum test;

Fig. S6C). Similar to the PIK3CAmut cohort, partici-

pants with high baseline TFE experienced worse PFS

than participants with low baseline TFE within both

the PBO + FUL [mPFS: 3.0 vs. 7.3 months; HR = 3.0,

95% CI 1.6–5.6; q = 0.0015] and TAS + FUL [mPFS:

Fig. 4. Association between tumour fraction estimate (TFE) and progression-free survival (PFS) in participants with PIK3CAmut baseline

ctDNA. (A) Distribution of TFE at baseline. Red dashed line (TFE = 0.1) denotes cut-off for high TFE (≥ 10%) versus low TFE (< 10%). (B)

Distribution of TFE at baseline stratified by study treatment. Amongst TAS + FUL-treated participants, the median TFE was 0.14 (IQR 0.02–

0.30); amongst PBO + FUL-treated participants, the median TFE was 0.14 (IQR 0.03–0.28). P-value obtained from Wilcoxon rank-sum test.

(C) Association between TFE at baseline and PFS. Log-rank tests using a Cox proportional hazards regression model were used to obtain

hazard ratio (HR) and P-values. FUL, fulvestrant; IQR, interquartile range; mPFS, median progression-free survival; mut, mutated; mos,

months; PBO, placebo; TAS, taselisib.
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3.6 vs. 9.4 months; HR = 3.1, 95% CI 1.9–5.0;
q < 0.001] treatment arms (Fig. S6D). In contrast to

the PIK3CAmut cohort, however, no difference in PFS

was observed between TAS + FUL-treated partici-

pants compared to PBO + FUL-treated participants

with either high baseline TFE [mPFS: 3.6 vs.

3.0 months; HR = 0.82, 95% CI 0.45–1.5; q = 0.54] or

low baseline TFE [9.4 vs. 7.3 months; HR = 0.86,

95% CI 0.53–1.4; q = 0.54].

3.5. Genomic landscape of EOT ctDNA in

participants who experienced clinical benefit

from study treatment

End-of-treatment (EOT) plasma samples were submit-

ted for F1L genomic profiling from 100 participants

with PIK3CAmut tumours who exhibited clinical

benefit. F1L data were evaluable for both the baseline

and EOT ctDNA samples for 72 of these 100 partici-

pants. Of the 72 participants with paired evaluable

ctDNA, 54 of those participants’ baseline ctDNA har-

boured a PIK3CAmut, of which 12 (22.2%) were trea-

ted with PBO + FUL and 42 (77.8%) were treated

with TAS + FUL; 18 of those participants’ baseline

ctDNA were PIK3CA NMD, of which 6 (33.3%) were

treated with PBO + FUL and 12 (66.7%) were treated

with TAS + FUL (Fig. 5A).

We investigated the spectrum of alterations detected

in EOT ctDNA from the participants for whom paired

baseline and EOT ctDNA data were available. Similar

to baseline ctDNA, all PIK3CA alterations detected in

EOT ctDNA across both study arms were short vari-

ants, specifically, SNVs (n = 65 in PIK3CAmut partici-

pants; n = 11 in PIK3CA NMD participants),

Fig. 5. Paired analysis of baseline and EOT ctDNA from participants enrolled in the SANDPIPER study who exhibited clinical benefit. (A)

Consort diagram of the analysis population. Genomic landscape of newly detected alterations at EOT in participants with PIK3CAmut

baseline ctDNA treated with (B) PBO + FUL and (C) TAS + FUL. Newly detected alterations are defined as alterations that were not

detected in baseline ctDNA but were detected in EOT ctDNA. 1PIK3CA mutation status is determined by cobas� PIK3CA Mutation testing

of baseline tumour tissue. 2PIK3CA mutation status is determined by detection of ≥ 1 pathogenic PIK3CA mutation in baseline ctDNA. CR,

complete response; ctDNA, circulating tumour DNA; EOT, end-of-treatment; FUL, fulvestrant; INV-BOR, investigator-assessed best overall

response; INV-PFS, investigator-assessed progression-free survival; mut, mutated; mos, months; n, sample size; NMD, no mutation

detected; PBO, placebo; PR, partial response; pts, patients; QC, quality control; TAS, taselisib.
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comprised largely of hotspot mutations in PIK3CA

[i.e. occurring at amino acids H1047 (26.3%; n = 20),

E545 (22.4%; n = 17) and E542 (17.1%; n = 13)].

Amongst the eight PIK3CA NMD participants with a

detectable PIK3CA SNV at EOT, three participants

each harboured two PIK3CA SNVs and five partici-

pants each harboured a single PIK3CA SNV. Of note,

while these eight PIK3CA NMD participants did not

have any PIK3CA SNV detected in baseline ctDNA,

they each had a detectable alteration in at least one of

the 69 other cancer-related genes evaluated on the F1L

assay, suggesting that ctDNA was present in the

blood of these participants. Amongst the PIK3CAmut

participants (n = 12 PBO + FUL-treated; n = 42

TAS + FUL-treated), the top altered genes at EOT

upon PBO + FUL treatment were PIK3CA (100%),

ESR1 (66.7%), TP53 (33.3%), CDH1 (25.0%), ATM

(16.7%), BRCA2 (16.7%), CHEK2 (16.7%) and

ERBB2 (16.7%); the top altered genes at EOT upon

TAS + FUL treatment were PIK3CA (92.9%), ESR1

(42.9%), TP53 (31.0%), CDH1 (21.4%), CHEK2

(14.3%) and PTEN (11.9%) (Fig. S7A,B). Amongst

PIK3CA NMD participants (n = 6 PBO + FUL-

treated; n = 12 TAS + FUL-treated), the altered genes

at EOT upon PBO + FUL treatment were PIK3CA

(50.0%), CDH1 (33.3%), ATM (16.7%), CHEK2

(16.7%), ESR1 (16.7%) and TP53 (16.7%); the top

altered genes at EOT upon TAS + FUL treatment

were TP53 (50.0%), PIK3CA (41.7%), ESR1 (33.3%),

ATM (16.7%), CDH1 (16.7%), CHEK2 (16.7%),

FGFR1 (16.7%) and NF1 (16.7%) (Fig. S8A,B).

Within each of the PIK3CAmut and PIK3CA NMD

cohorts, no statistically significant difference was

observed in the frequency of altered genes between the

treatment arms (q > 0.05, Fisher’s Exact Test).

3.6. Paired baseline and EOT ctDNA analysis of

PIK3CAmut participants who experienced clinical

benefit from study treatment

To investigate the impact of the study treatment on

the genomic landscape of EOT ctDNA in participants

who experienced clinical benefit, we compared the

genomic alterations that were detected in EOT ctDNA

but not detected in baseline ctDNA. Amongst the

PIK3CAmut participants, the top newly detected alter-

ations upon PBO + FUL treatment were in ESR1

(33.3%), ERBB2 (16.7%) and TP53 (16.7%); the top

newly detected alterations upon TAS + FUL treatment

were in ESR1 (28.6%), TP53 (16.7%) and PTEN

(9.5%) (Fig. 5B,C and Fig. S7C). Amongst the

PIK3CA NMD participants, the newly detected alter-

ations upon PBO + FUL treatment were in PIK3CA

(50.0%), CDH1 (16.7%), CHEK2 (16.7%) and ESR1

(16.7%); the top newly detected alterations upon

TAS + FUL treatment were in PIK3CA (41.7%),

ESR1 (33.3%), ATM (16.7%), CDH1 (16.7%),

CHEK2 (16.7%) and FGFR1 (16.7%) (Fig. S8C,D).

Within each of the PIK3CAmut and PIK3CA NMD

cohorts, no statistically significant difference was

observed in the alteration rates of individual genes

newly detected at EOT between the treatment arms

(q > 0.05, Fisher’s Exact Test). Lastly, to study the

scope of newly detected mutations specifically in PI3K

pathway genes, we assessed the changes in PIK3CA,

AKT1 and PTEN detected in EOT ctDNA compared

to baseline ctDNA in TAS + FUL-treated partici-

pants. We observed the detection of two new AKT1

mutations, eight new PTEN mutations and 10 unique

new PIK3CA mutations (Fig. 6A–C). Of note, each of

the participants whose EOT ctDNA harboured these

newly detected mutations in the PI3K pathway genes

was found to also have additional non-PI3K pathway

genomic alterations.

4. Discussion

As the SANDPIPER population had received prior

aromatase inhibitor therapy and was predominantly

CDK4/6-inhibitor na€ıve, the genomic landscape of

baseline ctDNA was expected to reflect that of an

endocrine-resistant population. In both the PIK3CA

mut and PIK3CA NMD cohorts, the top altered genes

detected in baseline ctDNA included genes associated

with the ER (ESR1), PI3K (PIK3CA, PTEN), p53

(TP53, ATM, CHEK2), MAPK (NF1), and/or recep-

tor tyrosine kinase (FGFR1) signalling pathways

(Fig. 1B and Fig. S2C). These observations are consis-

tent with the molecular profiles of endocrine-resistant

ER+, HER2� breast cancer tumours [3,17,18]. Resis-

tance resulting from ESR1 mutations has been well-

characterized in hormone-refractory disease [19,20]

and has been shown to correlate with worse outcomes

following ET [21,22]. Activation of PI3K signalling

through mutations in PIK3CA, AKT1 or PTEN has

been shown to confer endocrine resistance in vitro

[23,24]. Moreover, in vitro data have shown that

increased MAPK pathway signalling can promote the

loss of ERa expression in breast cancer tumours [25],

which may contribute to the poor responses to ET

observed in patients whose tumours harbour alter-

ations in genes associated with the MAPK pathway

[3]. Of note, the prevalence of TP53 alterations

detected in baseline ctDNA was higher than that

reported in another analysis of advanced HR+,
HER2� breast cancer tumour tissue [3] and may be
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due to the inclusion of TP53 somatic mutations that

occur in clonal haematopoiesis, which is detectable in

peripheral blood [26].

To expand our understanding of ER+, HER2�
breast cancer disease biology, we investigated the asso-

ciation of genomic alterations with PFS to identify

patient populations who may be intrinsically resistant

to study treatment. Our analysis showed that

in PBO + FUL-treated participants with PIK3CAmut

baseline ctDNA, alterations in TP53, PTEN and BRAF

trended towards poor prognosis. In TAS + FUL-

treated participants with PIK3CAmut baseline ctDNA,

alterations in TP53 and FGFR1 were associated with

poor prognosis, and alterations in PTEN, AKT1,

GNAS and MYC trended towards poor prognosis.

Numerous studies have demonstrated that TP53 alter-

ations confer clinical resistance to ET [17,27–29], and in

vitro studies have suggested that TP53 mutations may

confer resistance to PI3K inhibition [30]. Furthermore,

the loss of the tumour suppressor PTEN, a negative

regulator of the PI3K pathway, is associated with clini-

cal resistance to ET [31] and p110a inhibition [32,33].

Mutations in PIK3CA and PTEN have been described

to be largely mutually exclusive in breast cancers [34];

therefore, we speculated that the detection of co-

occurring PIK3CA and PTEN mutations in 6.3%

(n = 32/508) of the baseline ctDNA samples from

SANDPIPER participants (Fig. 1B) may indicate these

alterations are derived from different cancer cells in a

single tumour or from entirely different lesions.

Fig. 6. Circulating tumour DNA (ctDNA) dynamics of PI3K pathway genes in TAS + FUL-treated participants who exhibited clinical benefit.

ctDNA dynamics of (A) PIK3CA, (B) AKT1 and (C) PTEN mutations in end-of-treatment (EOT) ctDNA compared to baseline ctDNA. Sample

shown only if a change in mutation(s) detected was observed between baseline and EOT ctDNA. Dendrogram includes short variants that

were classified as either pathogenic (i.e. functionally relevant) or variants of unknown significance. Samples on the left are from participants

with the best overall response by investigator of partial response (PR) or complete response (CR) to TAS + FUL treatment; samples on the

right are from participants with stable disease (SD) in response to TAS + FUL treatment who demonstrated extended PFS of > 7 months

with tumour shrinkage. AKT1, AKT serine/threonine kinase 1 (also known as protein kinase B); FUL, fulvestrant; mos, months; mut,

mutated; NMD, no mutation detected; PBO, placebo; PI3K, phosphatidylinositol 3-kinases; PTEN, Phosphatase and tensin homolog; TAS,

taselisib.
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Recently, FGFR1 alterations have been shown to be

associated with worse prognosis compared to FGFR1

NMD in patients with PIK3CAmut tumours treated

with ET [35]. Of note, in the same analysis, patients

with PIK3CAmut tumours that harbour a co-occurring

FGFR1 alteration experienced improved PFS upon

treatment with alpelisib + FUL compared to PBO +
FUL [35]. Whereas this latter observation is the oppo-

site association compared to our study, we postulate it

may be due in part to the small sample sizes of the

biomarker-positive cohorts, in addition to differences in

the timing of sample collection (i.e. freshly collected

blood sample vs. archival or freshly collected tumour

tissue sample) and methodologies (e.g. blood- vs. tissue-

based NGS assays, challenges associated with calling

somatic copy number variation in samples with low

fractions of ctDNA) used to determine alteration sta-

tuses of the participants. Future studies are warranted

to further determine the role of FGFR1 alterations and

response to p110a inhibition in PIK3CAmut tumours.

Our search for alterations that may be predictive of

response to study treatment identified that PIK3CA-

mut participants with a co-occurring NF1 alteration in

baseline ctDNA experienced significantly improved

PFS upon treatment with TAS + FUL compared to

PBO + FUL (mPFS: 5.7 vs. 1.9 months; HR = 0.28,

95% CI 0.11–0.67; q = 0.017; Figs 2C and 3D). The

trend of participants with NF1 alterations exhibiting

shorter PFS compared to participants with NF1 NMD

upon PBO + FUL treatment (mPFS: 1.9 vs.

3.7 months; HR = 2.1, 95% CI 1.1–4.1; P = 0.053;

q = 0.35; Fig. 3D, Fig. S3A) is consistent with prior

studies that have identified neurofibromin (NF1) inac-

tivation as a resistance mechanism to ET [3,27,36].

Preclinical data have shown that NF1 functions as a

dual repressor of Ras signalling and ER transcrip-

tional activity, and the loss of NF1 results in oestradiol

hypersensitivity, contributing to ET resistance [37].

Our analysis suggests that PI3K inhibition may over-

come the negative impact of NF1 loss in ER+, HER2�
advanced breast cancers. While the mechanism

remains to be elucidated in breast cancer, prior work

suggests that NF1 regulates the proliferation of neural

stem cells in a PI3K-dependent manner [38].

To expand beyond genomic alterations, we evalu-

ated the association between ctDNA levels and clinical

outcome. We found that PIK3CA mut participants

tended to have higher baseline TFE compared to

PIK3CA NMD participants. In addition, we demon-

strated that participants with high baseline TFE expe-

rienced worse PFS compared to participants with low

baseline TFE across study treatments, regardless of

PIK3CA mutation status in baseline ctDNA. This

association between high baseline ctDNA levels and

worse clinical outcomes was similarly observed in

patients in the PALOMA-3 study (NCT01942135) [17],

EVE biomarker study (NCT02109913) [39], and in

samples collected from an independent cohort of

patients with ER+, HER2� metastatic breast cancer

[40]. Moreover, this association has been demonstrated

in patients with breast cancer in the neoadjuvant [41]

and adjuvant settings [42], as well as across multiple

cancer types [43]. The prognostic value of ctDNA is

thought to be partly the result of being detectable

upon tumour cell shedding into the bloodstream [11];

as such, the quantity of ctDNA may be indicative of

tumour burden and/or aggressiveness [7,43-45].

Lastly, we evaluated the scope of newly detected

alterations in EOT samples from participants who

exhibited clinical benefit in order to identify bio-

markers that may be associated with acquired resis-

tance to study treatment. We focused on the

TAS + FUL-treated PIK3CAmut participants who

exhibited clinical benefit and clustered genes involved

in similar signalling pathways. Newly detected alter-

ations at EOT were predominantly observed in genes

associated with the ER, PI3K and p53 signalling path-

ways (Fig. 6A–C and Fig. S7C), suggesting that the

activation or dysregulation of these signalling path-

ways contributes to clinical resistance to PI3K inhibi-

tion plus ET in ER+, HER2� breast tumours. As

previously reported, the acquisition of ESR1 or TP53

alterations likely reflects resistance to ET [17,21,22,27–
29]. The acquisition of PTEN or AKT1 mutations is

likely reflective of resistance to PI3K inhibition

[32,33,46–48]. Collectively, these findings underscore

the value of longitudinal ctDNA analysis to elucidate

changes in PI3K and associated pathways following

treatment with pathway-specific inhibitors.

A key strength of this study is that it leverages one

of the largest clinico-genomic datasets to date of par-

ticipants with PIK3CAmut ER+, HER2� breast can-

cer treated with a PI3K inhibitor, allowing for detailed

subgroup analyses based on genomic alteration status.

Nevertheless, our study has several limitations. First,

the EOT ctDNA data were derived from the analysis

of plasma samples only from PIK3CAmut participants

who exhibited clinical benefit [11.7% (n = 12/103) of

PBO + FUL-treated and 17.8% (n = 42/236) of

TAS + FUL-treated]; thus, the resulting interpretation

of the EOT landscape may not be reflective of the

total randomized population. Second, taselisib treat-

ment is associated with increased toxicities, as illus-

trated by the higher proportion of participants treated

with TAS + FUL who experienced adverse events

leading to discontinuation [16.8% (n = 70/416) with

12 Molecular Oncology (2023) � 2023 Genentech, Inc and The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of
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TAS + FUL vs. 2.3% (n = 5/213) with PBO + FUL]

[6]. As a result, some participants may have discontin-

ued study treatment for reasons other than disease

progression; thus, the association of the evaluated

oncogenic drivers with clinical outcomes may be

underestimated. Moreover, the sample sizes of some

biomarker-positive subgroups were small, and there-

fore, the analysis may be underpowered. Lastly, as

CDK4/6 inhibitors in combination with ET are

approved for use in first-line HR+, HER2� advanced

breast cancer, some may question the applicability of

our findings for a CDK4/6 inhibitor-treated patient

population. That said, patients with PIK3CAmut

HR+, HER2� advanced breast cancer have been

shown to benefit from treatment with the p110a inhibi-

tor alpelisib plus fulvestrant, regardless of prior treat-

ment with a CDK4/6 inhibitor [49,50]. Furthermore,

less than 50% of patients with HR+, HER2�
advanced breast cancer are prescribed CDK4/6 inhibi-

tors as first-line treatment [51-54] despite approvals in

the first-line setting, illustrating the continued rele-

vance of the SANDPIPER population to a real-world

setting.

5. Conclusion

Our comprehensive baseline ctDNA analysis character-

ized the genomic heterogeneity of a previously treated

ER+, HER2� advanced breast cancer patient popula-

tion. Although there are no approved treatment options

to directly target the alterations we have identified, the

detection of a prognostic biomarker from the cumula-

tive molecular landscape of patients may identify those

with high-risk diseases and who perhaps warrant addi-

tional intervention. Moreover, our analysis of paired

baseline and EOT ctDNA samples identified potential

mechanisms of resistance to the study treatment that is

largely driven by alterations in genes associated with

the ER, PI3K, p53, and/or FGFR signalling pathways.

This has important clinical implications following the

use of PI3K inhibitors in the treatment of patients with

ER+, HER2� advanced breast cancer.
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